
Micro Python Documentation
Выпуск 1.3.7

Damien P. George

04 February 2015

Оглавление

1 Quick reference for the pyboard 1
1.1 General board control . 1
1.2 LEDs . 1
1.3 Pins and GPIO . 1
1.4 External interrupts . 2
1.5 Timers . 2
1.6 PWM (pulse width modulation) . 2
1.7 ADC (analog to digital conversion) . 2
1.8 DAC (digital to analog conversion) . 2
1.9 UART (serial bus) . 3
1.10 SPI bus . 3
1.11 I2C bus . 3

2 General information about the pyboard 5
2.1 Local filesystem and SD card . 5
2.2 Boot modes . 5
2.3 Errors: flashing LEDs . 6

3 Micro Python tutorial 7
3.1 Introduction to the pyboard . 7
3.2 Running your first script . 8
3.3 Getting a Micro Python REPL prompt . 11
3.4 Turning on LEDs and basic Python concepts . 13
3.5 The Switch, callbacks and interrupts . 14
3.6 The accelerometer . 16
3.7 Safe mode and factory reset . 17
3.8 Making the pyboard act as a USB mouse . 19
3.9 The Timers . 21
3.10 Inline assembler . 22
3.11 Power control . 24
3.12 Tutorials requiring extra components . 25
3.13 Tips, tricks and useful things to know . 36

4 Micro Python libraries 39
4.1 Python standard libraries . 39
4.2 Python micro-libraries . 45
4.3 Libraries specific to the pyboard . 46

i

5 The pyboard hardware 73

6 Datasheets for the components on the pyboard 75

7 Datasheets for other components 77

8 Micro Python license information 79

9 Micro Python documentation contents 81
9.1 Quick reference for the pyboard . 81
9.2 General information about the pyboard . 83
9.3 Micro Python tutorial . 84
9.4 Micro Python libraries . 113
9.5 The pyboard hardware . 145
9.6 Datasheets for the components on the pyboard . 145
9.7 Datasheets for other components . 145
9.8 Micro Python license information . 145

10 Indices and tables 147

Содержание модулей Python 149

ii

Глава 1

Quick reference for the pyboard

1.1 General board control

See pyb.

import pyb

pyb.delay(50) # wait 50 milliseconds
pyb.millis() # number of milliseconds since bootup
pyb.repl_uart(pyb.UART(1, 9600)) # duplicate REPL on UART(1)
pyb.wfi() # pause CPU, waiting for interrupt
pyb.freq() # get CPU and bus frequencies
pyb.freq(60000000) # set CPU freq to 60MHz
pyb.stop() # stop CPU, waiting for external interrupt

1.2 LEDs

See pyb.LED .

from pyb import LED

led = LED(1) # red led
led.toggle()
led.on()
led.off()

1.3 Pins and GPIO

See pyb.Pin.

from pyb import Pin

p_out = Pin(’X1’, Pin.OUT_PP)
p_out.high()
p_out.low()

p_in = Pin(’X2’, Pin.IN, Pin.PULL_UP)
p_in.value() # get value, 0 or 1

1

Micro Python Documentation, Выпуск 1.3.7

1.4 External interrupts

See pyb.ExtInt .

from pyb import Pin, ExtInt

callback = lambda e: print("intr")
ext = ExtInt(Pin(’Y1’), ExtInt.IRQ_RISING, Pin.PULL_NONE, callback)

1.5 Timers

See pyb.Timer .

from pyb import Timer

tim = Timer(1, freq=1000)
tim.counter() # get counter value
tim.freq(0.5) # 0.5 Hz
tim.callback(lambda t: pyb.LED(1).toggle())

1.6 PWM (pulse width modulation)

See pyb.Pin and pyb.Timer .

from pyb import Pin, Timer

p = Pin(’X1’) # X1 has TIM2, CH1
tim = Timer(2, freq=1000)
ch = tim.channel(1, Timer.PWM, pin=p)
ch.pulse_width_percent(50)

1.7 ADC (analog to digital conversion)

See pyb.Pin and pyb.ADC .

from pyb import Pin, ADC

adc = ADC(Pin(’X19’))
adc.read() # read value, 0-4095

1.8 DAC (digital to analog conversion)

See pyb.Pin and pyb.DAC .

from pyb import Pin, DAC

dac = DAC(Pin(’X5’))
dac.write(120) # output between 0 and 255

2 Глава 1. Quick reference for the pyboard

Micro Python Documentation, Выпуск 1.3.7

1.9 UART (serial bus)

See pyb.UART .

from pyb import UART

uart = UART(1, 9600)
uart.write(’hello’)
uart.read(5) # read up to 5 bytes

1.10 SPI bus

See pyb.SPI .

from pyb import SPI

spi = SPI(1, SPI.MASTER, baudrate=200000, polarity=1, phase=0)
spi.send(’hello’)
spi.recv(5) # receive 5 bytes on the bus
spi.send_recv(’hello’) # send a receive 5 bytes

1.11 I2C bus

See pyb.I2C .

from pyb import I2C

i2c = I2C(1, I2C.MASTER, baudrate=100000)
i2c.scan() # returns list of slave addresses
i2c.send(’hello’, 0x42) # send 5 bytes to slave with address 0x42
i2c.recv(5, 0x42) # receive 5 bytes from slave
i2c.mem_read(2, 0x42, 0x10) # read 2 bytes from slave 0x42, slave memory 0x10
i2c.mem_write(’xy’, 0x42, 0x10) # write 2 bytes to slave 0x42, slave memory 0x10

1.9. UART (serial bus) 3

Micro Python Documentation, Выпуск 1.3.7

4 Глава 1. Quick reference for the pyboard

Глава 2

General information about the pyboard

2.1 Local filesystem and SD card

There is a small internal filesystem (a drive) on the pyboard, called /flash, which is stored within the
microcontroller’s flash memory. If a micro SD card is inserted into the slot, it is available as /sd.

When the pyboard boots up, it needs to choose a filesystem to boot from. If there is no SD card, then it
uses the internal filesystem /flash as the boot filesystem, otherwise, it uses the SD card /sd.

(Note that on older versions of the board, /flash is called 0:/ and /sd is called 1:/).

The boot filesystem is used for 2 things: it is the filesystem from which the boot.py and main.py files are
searched for, and it is the filesystem which is made available on your PC over the USB cable.

The filesystem will be available as a USB flash drive on your PC. You can save files to the drive, and edit
boot.py and main.py.

Remember to eject (on Linux, unmount) the USB drive before you reset your pyboard.

2.2 Boot modes

If you power up normally, or press the reset button, the pyboard will boot into standard mode: the boot.py
file will be executed first, then the USB will be configured, then main.py will run.

You can override this boot sequence by holding down the user switch as the board is booting up. Hold down
user switch and press reset, and then as you continue to hold the user switch, the LEDs will count in binary.
When the LEDs have reached the mode you want, let go of the user switch, the LEDs for the selected mode
will flash quickly, and the board will boot.

The modes are:

1. Green LED only, standard boot : run boot.py then main.py.

2. Orange LED only, safe boot : don’t run any scripts on boot-up.

3. Green and orange LED together, filesystem reset : resets the flash filesystem to its factory state, then
boots in safe mode.

If your filesystem becomes corrupt, boot into mode 3 to fix it.

5

Micro Python Documentation, Выпуск 1.3.7

2.3 Errors: flashing LEDs

There are currently 2 kinds of errors that you might see:

1. If the red and green LEDs flash alternatively, then a Python script (eg main.py) has an
error. Use the REPL to debug it.

2. If all 4 LEDs cycle on and off slowly, then there was a hard fault. This cannot be recovered from and
you need to do a hard reset.

6 Глава 2. General information about the pyboard

Глава 3

Micro Python tutorial

This tutorial is intended to get you started with your pyboard. All you need is a pyboard and a micro-USB
cable to connect it to your PC. If it is your first time, it is recommended to follow the tutorial through in
the order below.

3.1 Introduction to the pyboard

To get the most out of your pyboard, there are a few basic things to understand about how it works.

3.1.1 Caring for your pyboard

Because the pyboard does not have a housing it needs a bit of care:

• Be gentle when plugging/unplugging the USB cable. Whilst the USB connector is soldered through
the board and is relatively strong, if it breaks off it can be very difficult to fix.

• Static electricity can shock the components on the pyboard and destroy them. If you experience a lot
of static electricity in your area (eg dry and cold climates), take extra care not to shock the pyboard. If
your pyboard came in a black plastic box, then this box is the best way to store and carry the pyboard
as it is an anti-static box (it is made of a conductive plastic, with conductive foam inside).

As long as you take care of the hardware, you should be okay. It’s almost impossible to break the software on
the pyboard, so feel free to play around with writing code as much as you like. If the filesystem gets corrupt,
see below on how to reset it. In the worst case you might need to reflash the Micro Python software, but
that can be done over USB.

3.1.2 Layout of the pyboard

The micro USB connector is on the top right, the micro SD card slot on the top left of the board. There are
4 LEDs between the SD slot and USB connector. The colours are: red on the bottom, then green, orange,
and blue on the top. There are 2 switches: the right one is the reset switch, the left is the user switch.

3.1.3 Plugging in and powering on

The pyboard can be powered via USB. Connect it to your PC via a micro USB cable. There is only one way
that the cable will fit. Once connected, the green LED on the board should flash quickly.

7

Micro Python Documentation, Выпуск 1.3.7

3.1.4 Powering by an external power source

The pyboard can be powered by a battery or other external power source.

Be sure to connect the positive lead of the power supply to VIN, and ground to GND. There
is no polarity protection on the pyboard so you must be careful when connecting anything to
VIN.

The input voltage must be between 3.6V and 10V.

3.2 Running your first script

Let’s jump right in and get a Python script running on the pyboard. After all, that’s what it’s all about!

3.2.1 Connecting your pyboard

Connect your pyboard to your PC (Windows, Mac or Linux) with a micro USB cable. There is only one way
that the cable will connect, so you can’t get it wrong.

8 Глава 3. Micro Python tutorial

Micro Python Documentation, Выпуск 1.3.7

When the pyboard is connected to your PC it will power on and enter the start up process (the boot process).
The green LED should light up for half a second or less, and when it turns off it means the boot process has
completed.

3.2. Running your first script 9

Micro Python Documentation, Выпуск 1.3.7

3.2.2 Opening the pyboard USB drive

Your PC should now recognise the pyboard. It depends on the type of PC you have as to what happens
next:

• Windows: Your pyboard will appear as a removable USB flash drive. Windows may automatically
pop-up a window, or you may need to go there using Explorer.

Windows will also see that the pyboard has a serial device, and it will try to automatically configure
this device. If it does, cancel the process. We will get the serial device working in the next tutorial.

• Mac: Your pyboard will appear on the desktop as a removable disc. It will probably be called
“NONAME”. Click on it to open the pyboard folder.

• Linux: Your pyboard will appear as a removable medium. On Ubuntu it will mount automatically and
pop-up a window with the pyboard folder. On other Linux distributions, the pyboard may be mounted
automatically, or you may need to do it manually. At a terminal command line, type lsblk to see a
list of connected drives, and then mount /dev/sdb1 (replace sdb1 with the appropriate device). You
may need to be root to do this.

Okay, so you should now have the pyboard connected as a USB flash drive, and a window (or command line)
should be showing the files on the pyboard drive.

The drive you are looking at is known as /flash by the pyboard, and should contain the following 4 files:

• boot.py – this script is executed when the pyboard boots up. It sets up various
configuration options for the pyboard.

• main.py – this is the main script that will contain your Python program. It is executed
after boot.py.

• README.txt – this contains some very basic information about getting started with the
pyboard.

• pybcdc.inf – this is a Windows driver file to configure the serial USB device. More about
this in the next tutorial.

3.2.3 Editing main.py

Now we are going to write our Python program, so open the main.py file in a text editor. On Windows you
can use notepad, or any other editor. On Mac and Linux, use your favourite text editor. With the file open
you will see it contains 1 line:

main.py -- put your code here!

This line starts with a # character, which means that it is a comment. Such lines will not do anything, and
are there for you to write notes about your program.

Let’s add 2 lines to this main.py file, to make it look like this:

main.py -- put your code here!
import pyb
pyb.LED(4).on()

The first line we wrote says that we want to use the pyb module. This module contains all the functions and
classes to control the features of the pyboard.

The second line that we wrote turns the blue LED on: it first gets the LED class from the pyb module, creates
LED number 4 (the blue LED), and then turns it on.

10 Глава 3. Micro Python tutorial

http://micropython.org/resources/fresh-pyboard/boot.py
http://micropython.org/resources/fresh-pyboard/main.py
http://micropython.org/resources/fresh-pyboard/README.txt
http://micropython.org/resources/fresh-pyboard/pybcdc.inf

Micro Python Documentation, Выпуск 1.3.7

3.2.4 Resetting the pyboard

To run this little script, you need to first save and close the main.py file, and then eject (or unmount) the
pyboard USB drive. Do this like you would a normal USB flash drive.

When the drive is safely ejected/unmounted you can get to the fun part: press the RST switch on the pyboard
to reset and run your script. The RST switch is the small black button just below the USB connector on the
board, on the right edge.

When you press RST the green LED will flash quickly, and then the blue LED should turn on and stay on.

Congratulations! You have written and run your very first Micro Python program!

3.3 Getting a Micro Python REPL prompt

REPL stands for Read Evaluate Print Loop, and is the name given to the interactive Micro Python prompt
that you can access on the pyboard. Using the REPL is by far the easiest way to test out your code and run
commands. You can use the REPL in addition to writing scripts in main.py.

To use the REPL, you must connect to the serial USB device on the pyboard. How you do this depends on
your operating system.

3.3.1 Windows

You need to install the pyboard driver to use the serial USB device. The driver is on the pyboard’s USB
flash drive, and is called pybcdc.inf.

To install this driver you need to go to Device Manager for your computer, find the pyboard in the list of
devices (it should have a warning sign next to it because it’s not working yet), right click on the pyboard
device, select Properties, then Install Driver. You need to then select the option to find the driver manually
(don’t use Windows auto update), navigate to the pyboard’s USB drive, and select that. It should then
install. After installing, go back to the Device Manager to find the installed pyboard, and see which COM
port it is (eg COM4).

You now need to run your terminal program. You can use HyperTerminal if you have it installed, or download
the free program PuTTY: putty.exe. Using your serial program you must connect to the COM port that you
found in the previous step. With PuTTY, click on “Session” in the left-hand panel, then click the “Serial”
radio button on the right, then enter you COM port (eg COM4) in the “Serial Line” box. Finally, click the
“Open” button.

3.3.2 Mac OS X

Open a terminal and run:

screen /dev/tty.usbmodem*

When you are finished and want to exit screen, type CTRL-A CTRL-\.

3.3.3 Linux

Open a terminal and run:

3.3. Getting a Micro Python REPL prompt 11

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Micro Python Documentation, Выпуск 1.3.7

screen /dev/ttyACM0

You can also try picocom or minicom instead of screen. You may have to use /dev/ttyACM1 or a higher
number for ttyACM. And, you may need to give yourself the correct permissions to access this devices (eg
group uucp or dialout, or use sudo).

3.3.4 Using the REPL prompt

Now let’s try running some Micro Python code directly on the pyboard.

With your serial program open (PuTTY, screen, picocom, etc) you may see a blank screen with a flashing
cursor. Press Enter and you should be presented with a Micro Python prompt, i.e. >>>. Let’s make sure it
is working with the obligatory test:

>>> print("hello pyboard!")
hello pyboard!

In the above, you should not type in the >>> characters. They are there to indicate that you should type
the text after it at the prompt. In the end, once you have entered the text print("hello pyboard!") and
pressed Enter, the output on your screen should look like it does above.

If you already know some python you can now try some basic commands here.

If any of this is not working you can try either a hard reset or a soft reset; see below.

Go ahead and try typing in some other commands. For example:

>>> pyb.LED(1).on()
>>> pyb.LED(2).on()
>>> 1 + 2
3
>>> 1 / 2
0.5
>>> 20 * ’py’
’py’

3.3.5 Resetting the board

If something goes wrong, you can reset the board in two ways. The first is to press CTRL-D at the Micro
Python prompt, which performs a soft reset. You will see a message something like

>>>
PYB: sync filesystems
PYB: soft reboot
Micro Python v1.0 on 2014-05-03; PYBv1.0 with STM32F405RG
Type "help()" for more information.
>>>

If that isn’t working you can perform a hard reset (turn-it-off-and-on-again) by pressing the RST switch (the
small black button closest to the micro-USB socket on the board). This will end your session, disconnecting
whatever program (PuTTY, screen, etc) that you used to connect to the pyboard.

If you are going to do a hard-reset, it’s recommended to first close your serial program and eject/unmount
the pyboard drive.

12 Глава 3. Micro Python tutorial

Micro Python Documentation, Выпуск 1.3.7

3.4 Turning on LEDs and basic Python concepts

The easiest thing to do on the pyboard is to turn on the LEDs attached to the board. Connect the board, and
log in as described in tutorial 1. We will start by turning and LED on in the interpreter, type the following

>>> myled = pyb.LED(1)
>>> myled.on()
>>> myled.off()

These commands turn the LED on and off.

This is all very well but we would like this process to be automated. Open the file MAIN.PY on the pyboard
in your favourite text editor. Write or paste the following lines into the file. If you are new to python, then
make sure you get the indentation correct since this matters!

led = pyb.LED(2)
while True:

led.toggle()
pyb.delay(1000)

When you save, the red light on the pyboard should turn on for about a second. To run the script, do a soft
reset (CTRL-D). The pyboard will then restart and you should see a green light continuously flashing on
and off. Success, the first step on your path to building an army of evil robots! When you are bored of the
annoying flashing light then press CTRL-C at your terminal to stop it running.

So what does this code do? First we need some terminology. Python is an object-oriented language, almost
everything in python is a class and when you create an instance of a class you get an object. Classes have
methods associated to them. A method (also called a member function) is used to interact with or control
the object.

The first line of code creates an LED object which we have then called led. When we create the object, it
takes a single parameter which must be between 1 and 4, corresponding to the 4 LEDs on the board. The
pyb.LED class has three important member functions that we will use: on(), off() and toggle(). The other
function that we use is pyb.delay() this simply waits for a given time in miliseconds. Once we have created
the LED object, the statement while True: creates an infinite loop which toggles the led between on and off
and waits for 1 second.

Exercise: Try changing the time between toggling the led and turning on a different LED.

Exercise: Connect to the pyboard directly, create a pyb.LED object and turn it on using the
on() method.

3.4.1 A Disco on your pyboard

So far we have only used a single LED but the pyboard has 4 available. Let’s start by creating an object for
each LED so we can control each of them. We do that by creating a list of LEDS with a list comprehension.

leds = [pyb.LED(i) for i in range(1,5)]

If you call pyb.LED() with a number that isn’t 1,2,3,4 you will get an error message. Next we will set up an
infinite loop that cycles through each of the LEDs turning them on and off.

n = 0
while True:

n = (n + 1) % 4
leds[n].toggle()
pyb.delay(50)

3.4. Turning on LEDs and basic Python concepts 13

Micro Python Documentation, Выпуск 1.3.7

Here, n keeps track of the current LED and every time the loop is executed we cycle to the next n (the %
sign is a modulus operator that keeps n between 0 and 4.) Then we access the nth LED and toggle it. If you
run this you should see each of the LEDs turning on then all turning off again in sequence.

One problem you might find is that if you stop the script and then start it again that the LEDs are stuck on
from the previous run, ruining our carefully choreographed disco. We can fix this by turning all the LEDs
off when we initialise the script and then using a try/finally block. When you press CTRL-C, Micro Python
generates a VCPInterrupt exception. Exceptions normally mean something has gone wrong and you can use
a try: command to “catch” an exception. In this case it is just the user interrupting the script, so we don’t
need to catch the error but just tell Micro Python what to do when we exit. The finally block does this, and
we use it to make sure all the LEDs are off. The full code is:

leds = [pyb.LED(i) for i in range(1,5)]
for l in leds:

l.off()

n = 0
try:

while True:
n = (n + 1) % 4
leds[n].toggle()
pyb.delay(50)

finally:
for l in leds:

l.off()

3.4.2 The Fourth Special LED

The blue LED is special. As well as turning it on and off, you can control the intensity using the intensity()
method. This takes a number between 0 and 255 that determines how bright it is. The following script makes
the blue LED gradually brighter then turns it off again.

led = pyb.LED(4)
intensity = 0
while True:

intensity = (intensity + 1) % 255
led.intensity(intensity)
pyb.delay(20)

You can call intensity() on the other LEDs but they can only be off or on. 0 sets them off and any other
number up to 255 turns them on.

3.5 The Switch, callbacks and interrupts

The pyboard has 2 small switches, labelled USR and RST. The RST switch is a hard-reset switch, and if
you press it then it restarts the pyboard from scratch, equivalent to turning the power off then back on.

The USR switch is for general use, and is controlled via a Switch object. To make a switch object do:

>>> sw = pyb.Switch()

Remember that you may need to type import pyb if you get an error that the name pyb does not exist.

With the switch object you can get its status:

14 Глава 3. Micro Python tutorial

Micro Python Documentation, Выпуск 1.3.7

>>> sw()
False

This will print False if the switch is not held, or True if it is held. Try holding the USR switch down while
running the above command.

3.5.1 Switch callbacks

The switch is a very simple object, but it does have one advanced feature: the sw.callback() function. The
callback function sets up something to run when the switch is pressed, and uses an interrupt. It’s probably
best to start with an example before understanding how interrupts work. Try running the following at the
prompt:

>>> sw.callback(lambda:print(’press!’))

This tells the switch to print press! each time the switch is pressed down. Go ahead and try it: press the
USR switch and watch the output on your PC. Note that this print will interrupt anything you are typing,
and is an example of an interrupt routine running asynchronously.

As another example try:

>>> sw.callback(lambda:pyb.LED(1).toggle())

This will toggle the red LED each time the switch is pressed. And it will even work while other code is
running.

To disable the switch callback, pass None to the callback function:

>>> sw.callback(None)

You can pass any function (that takes zero arguments) to the switch callback. Above we used the lambda
feature of Python to create an anonymous function on the fly. But we could equally do:

>>> def f():
... pyb.LED(1).toggle()
...
>>> sw.callback(f)

This creates a function called f and assigns it to the switch callback. You can do things this way when your
function is more complicated than a lambda will allow.

Note that your callback functions must not allocate any memory (for example they cannot create a tuple or
list). Callback functions should be relatively simple. If you need to make a list, make it beforehand and store
it in a global variable (or make it local and close over it). If you need to do a long, complicated calculation,
then use the callback to set a flag which some other code then responds to.

3.5.2 Technical details of interrupts

Let’s step through the details of what is happening with the switch callback. When you register a function
with sw.callback(), the switch sets up an external interrupt trigger (falling edge) on the pin that the switch
is connected to. This means that the microcontroller will listen on the pin for any changes, and the following
will occur:

1. When the switch is pressed a change occurs on the pin (the pin goes from low to high), and the
microcontroller registers this change.

3.5. The Switch, callbacks and interrupts 15

Micro Python Documentation, Выпуск 1.3.7

2. The microcontroller finishes executing the current machine instruction, stops execution, and saves its
current state (pushes the registers on the stack). This has the effect of pausing any code, for example
your running Python script.

3. The microcontroller starts executing the special interrupt handler associated with the switch’s external
trigger. This interrupt handler get the function that you registered with sw.callback() and executes
it.

4. Your callback function is executed until it finishes, returning control to the switch interrupt handler.

5. The switch interrupt handler returns, and the microcontroller is notified that the interrupt has been
dealt with.

6. The microcontroller restores the state that it saved in step 2.

7. Execution continues of the code that was running at the beginning. Apart from the pause, this code
does not notice that it was interrupted.

The above sequence of events gets a bit more complicated when multiple interrupts occur at the same time.
In that case, the interrupt with the highest priority goes first, then the others in order of their priority. The
switch interrupt is set at the lowest priority.

3.6 The accelerometer

Here you will learn how to read the accelerometer and signal using LEDs states like tilt left and tilt right.

3.6.1 Using the accelerometer

The pyboard has an accelerometer (a tiny mass on a tiny spring) that can be used to detect the angle of
the board and motion. There is a different sensor for each of the x, y, z directions. To get the value of the
accelerometer, create a pyb.Accel() object and then call the x() method.

>>> accel = pyb.Accel()
>>> accel.x()
7

This returns a signed integer with a value between around -30 and 30. Note that the measurement is very
noisy, this means that even if you keep the board perfectly still there will be some variation in the number
that you measure. Because of this, you shouldn’t use the exact value of the x() method but see if it is in a
certain range.

We will start by using the accelerometer to turn on a light if it is not flat.

accel = pyb.Accel()
light = pyb.LED(3)
SENSITIVITY = 3

while True:
x = accel.x()
if abs(x) > SENSITIVITY:

light.on()
else:

light.off()

pyb.delay(100)

16 Глава 3. Micro Python tutorial

Micro Python Documentation, Выпуск 1.3.7

We create Accel and LED objects, then get the value of the x direction of the accelerometer. If the magnitude
of x is bigger than a certain value SENSITIVITY, then the LED turns on, otherwise it turns off. The loop has
a small pyb.delay() otherwise the LED flashes annoyingly when the value of x is close to SENSITIVITY.
Try running this on the pyboard and tilt the board left and right to make the LED turn on and off.

Exercise: Change the above script so that the blue LED gets brighter the more you tilt the
pyboard. HINT: You will need to rescale the values, intensity goes from 0-255.

3.6.2 Making a spirit level

The example above is only sensitive to the angle in the x direction but if we use the y() value and more
LEDs we can turn the pyboard into a spirit level.

xlights = (pyb.LED(2), pyb.LED(3))
ylights = (pyb.LED(1), pyb.LED(4))

accel = pyb.Accel()
SENSITIVITY = 3

while True:
x = accel.x()
if x > SENSITIVITY:

xlights[0].on()
xlights[1].off()

elif x < -SENSITIVITY:
xlights[1].on()
xlights[0].off()

else:
xlights[0].off()
xlights[1].off()

y = accel.y()
if y > SENSITIVITY:

ylights[0].on()
ylights[1].off()

elif y < -SENSITIVITY:
ylights[1].on()
ylights[0].off()

else:
ylights[0].off()
ylights[1].off()

pyb.delay(100)

We start by creating a tuple of LED objects for the x and y directions. Tuples are immutable objects in
python which means they can’t be modified once they are created. We then proceed as before but turn
on a different LED for positive and negative x values. We then do the same for the y direction. This isn’t
particularly sophisticated but it does the job. Run this on your pyboard and you should see different LEDs
turning on depending on how you tilt the board.

3.7 Safe mode and factory reset

If something goes wrong with your pyboard, don’t panic! It is almost impossible for you to break the pyboard
by programming the wrong thing.

3.7. Safe mode and factory reset 17

Micro Python Documentation, Выпуск 1.3.7

The first thing to try is to enter safe mode: this temporarily skips execution of boot.py and main.py and
gives default USB settings.

If you have problems with the filesystem you can do a factory reset, which restores the filesystem to its
original state.

3.7.1 Safe mode

To enter safe mode, do the following steps:

1. Connect the pyboard to USB so it powers up.

2. Hold down the USR switch.

3. While still holding down USR, press and release the RST switch.

4. The LEDs will then cycle green to orange to green+orange and back again.

5. Keep holding down USR until only the orange LED is lit, and then let go of the USR switch.

6. The orange LED should flash quickly 4 times, and then turn off.

7. You are now in safe mode.

In safe mode, the boot.py and main.py files are not executed, and so the pyboard boots up with default
settings. This means you now have access to the filesystem (the USB drive should appear), and you can edit
boot.py and main.py to fix any problems.

Entering safe mode is temporary, and does not make any changes to the files on the pyboard.

3.7.2 Factory reset the filesystem

If you pyboard’s filesystem gets corrupted (for example, you forgot to eject/unmount it), or you have some
code in boot.py or main.py which you can’t escape from, then you can reset the filesystem.

Resetting the filesystem deletes all files on the internal pyboard storage (not the SD card), and restores the
files boot.py, main.py, README.txt and pybcdc.inf back to their original state.

To do a factory reset of the filesystem you follow a similar procedure as you did to enter safe mode, but
release USR on green+orange:

1. Connect the pyboard to USB so it powers up.

2. Hold down the USR switch.

3. While still holding down USR, press and release the RST switch.

4. The LEDs will then cycle green to orange to green+orange and back again.

5. Keep holding down USR until both the green and orange LEDs are lit, and then let go of the USR
switch.

6. The green and orange LEDs should flash quickly 4 times.

7. The red LED will turn on (so red, green and orange are now on).

8. The pyboard is now resetting the filesystem (this takes a few seconds).

9. The LEDs all turn off.

10. You now have a reset filesystem, and are in safe mode.

11. Press and release the RST switch to boot normally.

18 Глава 3. Micro Python tutorial

Micro Python Documentation, Выпуск 1.3.7

3.8 Making the pyboard act as a USB mouse

The pyboard is a USB device, and can configured to act as a mouse instead of the default USB flash drive.

To do this we must first edit the boot.py file to change the USB configuration. If you have not yet touched
your boot.py file then it will look something like this:

boot.py -- run on boot-up
can run arbitrary Python, but best to keep it minimal

import pyb
#pyb.main(’main.py’) # main script to run after this one
#pyb.usb_mode(’CDC+MSC’) # act as a serial and a storage device
#pyb.usb_mode(’CDC+HID’) # act as a serial device and a mouse

To enable the mouse mode, uncomment the last line of the file, to make it look like:

pyb.usb_mode(’CDC+HID’) # act as a serial device and a mouse

If you already changed your boot.py file, then the minimum code it needs to work is:

import pyb
pyb.usb_mode(’CDC+HID’)

This tells the pyboard to configure itself as a CDC (serial) and HID (human interface device, in our case a
mouse) USB device when it boots up.

Eject/unmount the pyboard drive and reset it using the RST switch. Your PC should now detect the pyboard
as a mouse!

3.8.1 Sending mouse events by hand

To get the py-mouse to do anything we need to send mouse events to the PC. We will first do this manually
using the REPL prompt. Connect to your pyboard using your serial program and type the following:

>>> pyb.hid((0, 10, 0, 0))

Your mouse should move 10 pixels to the right! In the command above you are sending 4 pieces of information:
button status, x, y and scroll. The number 10 is telling the PC that the mouse moved 10 pixels in the x
direction.

Let’s make the mouse oscillate left and right:

>>> import math
>>> def osc(n, d):
... for i in range(n):
... pyb.hid((0, int(20 * math.sin(i / 10)), 0, 0))
... pyb.delay(d)
...
>>> osc(100, 50)

The first argument to the function osc is the number of mouse events to send, and the second argument is
the delay (in milliseconds) between events. Try playing around with different numbers.

Excercise: make the mouse go around in a circle.

3.8. Making the pyboard act as a USB mouse 19

Micro Python Documentation, Выпуск 1.3.7

3.8.2 Making a mouse with the accelerometer

Now lets make the mouse move based on the angle of the pyboard, using the accelerometer. The following
code can be typed directly at the REPL prompt, or put in the main.py file. Here, we’ll put in in main.py
because to do that we will learn how to go into safe mode.

At the moment the pyboard is acting as a serial USB device and an HID (a mouse). So you cannot access
the filesystem to edit your main.py file.

You also can’t edit your boot.py to get out of HID-mode and back to normal mode with a USB drive...

To get around this we need to go into safe mode. This was described in the [safe mode tutorial](tut-reset),
but we repeat the instructions here:

1. Hold down the USR switch.

2. While still holding down USR, press and release the RST switch.

3. The LEDs will then cycle green to orange to green+orange and back again.

4. Keep holding down USR until only the orange LED is lit, and then let go of the USR switch.

5. The orange LED should flash quickly 4 times, and then turn off.

6. You are now in safe mode.

In safe mode, the boot.py and main.py files are not executed, and so the pyboard boots up with default
settings. This means you now have access to the filesystem (the USB drive should appear), and you can
edit main.py. (Leave boot.py as-is, because we still want to go back to HID-mode after we finish editting
main.py.)

In main.py put the following code:

import pyb

switch = pyb.Switch()
accel = pyb.Accel()

while not switch():
pyb.hid((0, accel.x(), accel.y(), 0))
pyb.delay(20)

Save your file, eject/unmount your pyboard drive, and reset it using the RST switch. It should now act as
a mouse, and the angle of the board will move the mouse around. Try it out, and see if you can make the
mouse stand still!

Press the USR switch to stop the mouse motion.

You’ll note that the y-axis is inverted. That’s easy to fix: just put a minus sign in front of the y-coordinate
in the pyb.hid() line above.

3.8.3 Restoring your pyboard to normal

If you leave your pyboard as-is, it’ll behave as a mouse everytime you plug it in. You probably want to change
it back to normal. To do this you need to first enter safe mode (see above), and then edit the boot.py file.
In the boot.py file, comment out (put a # in front of) the line with the CDC+HID setting, so it looks like:

#pyb.usb_mode(’CDC+HID’) # act as a serial device and a mouse

Save your file, eject/unmount the drive, and reset the pyboard. It is now back to normal operating mode.

20 Глава 3. Micro Python tutorial

Micro Python Documentation, Выпуск 1.3.7

3.9 The Timers

The pyboard has 14 timers which each consist of an independent counter running at a user-defined frequency.
They can be set up to run a function at specific intervals. The 14 timers are numbered 1 through 14, but 3
is reserved for internal use, and 5 and 6 are used for servo and ADC/DAC control. Avoid using these timers
if possible.

Let’s create a timer object:

>>> tim = pyb.Timer(4)

Now let’s see what we just created:

>>> tim
Timer(4)

The pyboard is telling us that tim is attached to timer number 4, but it’s not yet initialised. So let’s initialise
it to trigger at 10 Hz (that’s 10 times per second):

>>> tim.init(freq=10)

Now that it’s initialised, we can see some information about the timer:

>>> tim
Timer(4, prescaler=255, period=32811, mode=0, div=0)

The information means that this timer is set to run at the peripheral clock speed divided by 255, and it
will count up to 32811, at which point it triggers an interrupt, and then starts counting again from 0. These
numbers are set to make the timer trigger at 10 Hz.

3.9.1 Timer counter

So what can we do with our timer? The most basic thing is to get the current value of its counter:

>>> tim.counter()
21504

This counter will continuously change, and counts up.

3.9.2 Timer callbacks

The next thing we can do is register a callback function for the timer to execute when it triggers (see the
[switch tutorial](tut-switch) for an introduction to callback functions):

>>> tim.callback(lambda t:pyb.LED(1).toggle())

This should start the red LED flashing right away. It will be flashing at 5 Hz (2 toggle’s are needed for 1
flash, so toggling at 10 Hz makes it flash at 5 Hz). You can change the frequency by re-initialising the timer:

>>> tim.init(freq=20)

You can disable the callback by passing it the value None:

>>> tim.callback(None)

3.9. The Timers 21

Micro Python Documentation, Выпуск 1.3.7

The function that you pass to callback must take 1 argument, which is the timer object that triggered. This
allows you to control the timer from within the callback function.

We can create 2 timers and run them independently:

>>> tim4 = pyb.Timer(4, freq=10)
>>> tim7 = pyb.Timer(7, freq=20)
>>> tim4.callback(lambda t: pyb.LED(1).toggle())
>>> tim7.callback(lambda t: pyb.LED(2).toggle())

Because the callbacks are proper hardware interrupts, we can continue to use the pyboard for other things
while these timers are running.

3.9.3 Making a microsecond counter

You can use a timer to create a microsecond counter, which might be useful when you are doing something
which requires accurate timing. We will use timer 2 for this, since timer 2 has a 32-bit counter (so does timer
5, but if you use timer 5 then you can’t use the Servo driver at the same time).

We set up timer 2 as follows:

>>> micros = pyb.Timer(2, prescaler=83, period=0x3fffffff)

The prescaler is set at 83, which makes this timer count at 1 MHz. This is because the CPU clock, running at
168 MHz, is divided by 2 and then by prescaler+1, giving a freqency of 168 MHz/2/(83+1)=1 MHz for timer
2. The period is set to a large number so that the timer can count up to a large number before wrapping
back around to zero. In this case it will take about 17 minutes before it cycles back to zero.

To use this timer, it’s best to first reset it to 0:

>>> micros.counter(0)

and then perform your timing:

>>> start_micros = micros.counter()

... do some stuff ...

>>> end_micros = micros.counter()

3.10 Inline assembler

Here you will learn how to write inline assembler in Micro Python.

Note: this is an advanced tutorial, intended for those who already know a bit about microcontrollers and
assembly language.

Micro Python includes an inline assembler. It allows you to write assembly routines as a Python function,
and you can call them as you would a normal Python function.

3.10.1 Returning a value

Inline assembler functions are denoted by a special function decorator. Let’s start with the simplest example:

22 Глава 3. Micro Python tutorial

Micro Python Documentation, Выпуск 1.3.7

@micropython.asm_thumb
def fun():

movw(r0, 42)

You can enter this in a script or at the REPL. This function takes no arguments and returns the number 42.
r0 is a register, and the value in this register when the function returns is the value that is returned. Micro
Python always interprets the r0 as an integer, and converts it to an integer object for the caller.

If you run print(fun()) you will see it print out 42.

3.10.2 Accessing peripherals

For something a bit more complicated, let’s turn on an LED:

@micropython.asm_thumb
def led_on():

movwt(r0, stm.GPIOA)
movw(r1, 1 << 13)
strh(r1, [r0, stm.GPIO_BSRRL])

This code uses a few new concepts:

• stm is a module which provides a set of constants for easy access to the registers of the pyboard’s
microcontroller. Try running import stm and then help(stm) at the REPL. It will give you a list of
all the available constants.

• stm.GPIOA is the address in memory of the GPIOA peripheral. On the pyboard, the red LED is on
port A, pin PA13.

• movwt moves a 32-bit number into a register. It is a convenience function that turns into 2 thumb
instructions: movw followed by movt. The movt also shifts the immediate value right by 16 bits.

• strh stores a half-word (16 bits). The instruction above stores the lower 16-bits of r1 into the memory
location r0 + stm.GPIO_BSRRL. This has the effect of setting high all those pins on port A for which
the corresponding bit in r0 is set. In our example above, the 13th bit in r0 is set, so PA13 is pulled
high. This turns on the red LED.

3.10.3 Accepting arguments

Inline assembler functions can accept up to 3 arguments. If they are used, they must be named r0, r1 and
r2 to reflect the registers and the calling conventions.

Here is a function that adds its arguments:

@micropython.asm_thumb
def asm_add(r0, r1):

add(r0, r0, r1)

This performs the computation r0 = r0 + r1. Since the result is put in r0, that is what is returned. Try
asm_add(1, 2), it should return 3.

3.10.4 Loops

We can assign labels with label(my_label), and branch to them using b(my_label), or a conditional branch
like bgt(my_label).

The following example flashes the green LED. It flashes it r0 times.

3.10. Inline assembler 23

Micro Python Documentation, Выпуск 1.3.7

@micropython.asm_thumb
def flash_led(r0):

get the GPIOA address in r1
movwt(r1, stm.GPIOA)

get the bit mask for PA14 (the pin LED #2 is on)
movw(r2, 1 << 14)

b(loop_entry)

label(loop1)

turn LED on
strh(r2, [r1, stm.GPIO_BSRRL])

delay for a bit
movwt(r4, 5599900)
label(delay_on)
sub(r4, r4, 1)
cmp(r4, 0)
bgt(delay_on)

turn LED off
strh(r2, [r1, stm.GPIO_BSRRH])

delay for a bit
movwt(r4, 5599900)
label(delay_off)
sub(r4, r4, 1)
cmp(r4, 0)
bgt(delay_off)

loop r0 times
sub(r0, r0, 1)
label(loop_entry)
cmp(r0, 0)
bgt(loop1)

3.11 Power control

pyb.wfi() is used to reduce power consumption while waiting for an event such as an interrupt. You would
use it in the following situation:

while True:
do_some_processing()
pyb.wfi()

Control the frequency using pyb.freq():

24 Глава 3. Micro Python tutorial

Micro Python Documentation, Выпуск 1.3.7

pyb.freq(30000000) # set CPU frequency to 30MHz

3.12 Tutorials requiring extra components

3.12.1 Controlling hobby servo motors

There are 4 dedicated connection points on the pyboard for connecting up hobby servo motors (see
eg [Wikipedia](http://en.wikipedia.org/wiki/Servo_%28radio_control%29)). These motors have 3 wires:
ground, power and signal. On the pyboard you can connect them in the bottom right corner, with the
signal pin on the far right. Pins X1, X2, X3 and X4 are the 4 dedicated servo signal pins.

3.12. Tutorials requiring extra components 25

http://en.wikipedia.org/wiki/Servo_%28radio_control%29

Micro Python Documentation, Выпуск 1.3.7

In this picture there are male-male double adaptors to connect the servos to the header pins on the pyboard.

The ground wire on a servo is usually the darkest coloured one, either black or dark brown. The power wire
will most likely be red.

The power pin for the servos (labelled VIN) is connected directly to the input power source of the pyboard.
When powered via USB, VIN is powered through a diode by the 5V USB power line. Connect to USB, the
pyboard can power at least 4 small to medium sized servo motors.

26 Глава 3. Micro Python tutorial

Micro Python Documentation, Выпуск 1.3.7

If using a battery to power the pyboard and run servo motors, make sure it is not greater than 6V, since
this is the maximum voltage most servo motors can take. (Some motors take only up to 4.8V, so check what
type you are using.)

Creating a Servo object

Plug in a servo to position 1 (the one with pin X1) and create a servo object using:

>>> servo1 = pyb.Servo(1)

To change the angle of the servo use the angle method:

>>> servo1.angle(45)
>>> servo1.angle(-60)

The angle here is measured in degrees, and ranges from about -90 to +90, depending on the motor. Calling
angle without parameters will return the current angle:

>>> servo1.angle()
-60

Note that for some angles, the returned angle is not exactly the same as the angle you set, due to rounding
errors in setting the pulse width.

You can pass a second parameter to the angle method, which specifies how long to take (in milliseconds) to
reach the desired angle. For example, to take 1 second (1000 milliseconds) to go from the current position
to 50 degrees, use

>>> servo1.angle(50, 1000)

This command will return straight away and the servo will continue to move to the desired angle, and stop
when it gets there. You can use this feature as a speed control, or to synchronise 2 or more servo motors. If
we have another servo motor (servo2 = pyb.Servo(2)) then we can do

>>> servo1.angle(-45, 2000); servo2.angle(60, 2000)

This will move the servos together, making them both take 2 seconds to reach their final angles.

Note: the semicolon between the 2 expressions above is used so that they are executed one after the other
when you press enter at the REPL prompt. In a script you don’t need to do this, you can just write them
one line after the other.

Continuous rotation servos

So far we have been using standard servos that move to a specific angle and stay at that angle. These
servo motors are useful to create joints of a robot, or things like pan-tilt mechanisms. Internally, the motor
has a variable resistor (potentiometer) which measures the current angle and applies power to the motor
proportional to how far it is from the desired angle. The desired angle is set by the width of a high-pulse on
the servo signal wire. A pulse width of 1500 microsecond corresponds to the centre position (0 degrees). The
pulses are sent at 50 Hz, ie 50 pulses per second.

You can also get continuous rotation servo motors which turn continuously clockwise or counterclockwise.
The direction and speed of rotation is set by the pulse width on the signal wire. A pulse width of 1500
microseconds corresponds to a stopped motor. A pulse width smaller or larger than this means rotate one
way or the other, at a given speed.

3.12. Tutorials requiring extra components 27

Micro Python Documentation, Выпуск 1.3.7

On the pyboard, the servo object for a continuous rotation motor is the same as before. In fact, using angle
you can set the speed. But to make it easier to understand what is intended, there is another method called
speed which sets the speed:

>>> servo1.speed(30)

speed has the same functionality as angle: you can get the speed, set it, and set it with a time to reach the
final speed.

>>> servo1.speed()
30
>>> servo1.speed(-20)
>>> servo1.speed(0, 2000)

The final command above will set the motor to stop, but take 2 seconds to do it. This is essentially a control
over the acceleration of the continuous servo.

A servo speed of 100 (or -100) is considered maximum speed, but actually you can go a bit faster than that,
depending on the particular motor.

The only difference between the angle and speed methods (apart from the name) is the way the input
numbers (angle or speed) are converted to a pulse width.

Calibration

The conversion from angle or speed to pulse width is done by the servo object using its calibration values.
To get the current calibration, use

>>> servo1.calibration()
(640, 2420, 1500, 2470, 2200)

There are 5 numbers here, which have meaning:

1. Minimum pulse width; the smallest pulse width that the servo accepts.

2. Maximum pulse width; the largest pulse width that the servo accepts.

3. Centre pulse width; the pulse width that puts the servo at 0 degrees or 0 speed.

4. The pulse width corresponding to 90 degrees. This sets the conversion in the method angle of angle
to pulse width.

5. The pulse width corresponding to a speed of 100. This sets the conversion in the method speed of
speed to pulse width.

You can recalibrate the servo (change its default values) by using:

>>> servo1.calibration(700, 2400, 1510, 2500, 2000)

Of course, you would change the above values to suit your particular servo motor.

3.12.2 Fading LEDs

In addition to turning LEDs on and off, it is also possible to control the brightness of an LED using Pulse-
Width Modulation (PWM), a common technique for obtaining variable output from a digital pin. This allows
us to fade an LED:

28 Глава 3. Micro Python tutorial

http://en.wikipedia.org/wiki/Pulse-width_modulation
http://en.wikipedia.org/wiki/Pulse-width_modulation

Micro Python Documentation, Выпуск 1.3.7

Components

You will need:

• Standard 5 or 3 mm LED

• 100 Ohm resistor

• Wires

• Breadboard (optional, but makes things easier)

Connecting Things Up

For this tutorial, we will use the X1 pin. Connect one end of the resistor to X1, and the other end to the
anode of the LED, which is the longer leg. Connect the cathode of the LED to ground.

Code

By examining the Quick reference for the pyboard , we see that X1 is connected to channel 1 of timer 5 (TIM5
CH1). Therefore we will first create a Timer object for timer 5, then create a TimerChannel object for channel
1:

from pyb import Timer
from time import sleep

timer 5 will be created with a frequency of 100 Hz
tim = pyb.Timer(5, freq=100)
tchannel = tim.channel(1, Timer.PWM, pin=pyb.Pin.board.X1, pulse_width=0)

3.12. Tutorials requiring extra components 29

http://en.wikipedia.org/wiki/Breadboard

Micro Python Documentation, Выпуск 1.3.7

Brightness of the LED in PWM is controlled by controlling the pulse-width, that is the amount of time the
LED is on every cycle. With a timer frequency of 100 Hz, each cycle takes 0.01 second, or 10 ms.

To achieve the fading effect shown at the beginning of this tutorial, we want to set the pulse-width to a
small value, then slowly increase the pulse-width to brighten the LED, and start over when we reach some
maximum brightness:

maximum and minimum pulse-width, which corresponds to maximum
and minimum brightness
max_width = 200000
min_width = 20000

how much to change the pulse-width by each step
wstep = 1500
cur_width = min_width

while True:
tchannel.pulse_width(cur_width)

this determines how often we change the pulse-width. It is
analogous to frames-per-second
sleep(0.01)

cur_width += wstep

if cur_width > max_width:
cur_width = min_width

Breathing Effect

If we want to have a breathing effect, where the LED fades from dim to bright then bright to dim, then
we simply need to reverse the sign of wstep when we reach maximum brightness, and reverse it again at
minimum brightness. To do this we modify the while loop to be:

while True:
tchannel.pulse_width(cur_width)

sleep(0.01)

cur_width += wstep

if cur_width > max_width:
cur_width = max_width
wstep *= -1

elif cur_width < min_width:
cur_width = min_width
wstep *= -1

Advanced Exercise

You may have noticed that the LED brightness seems to fade slowly, but increases quickly. This is because
our eyes interprets brightness logarithmically (Weber’s Law), while the LED’s brightness changes linearly,
that is by the same amount each time. How do you solve this problem? (Hint: what is the opposite of the
logarithmic function?)

30 Глава 3. Micro Python tutorial

http://www.telescope-optics.net/eye_intensity_response.htm

Micro Python Documentation, Выпуск 1.3.7

Addendum

We could have also used the digital-to-analog converter (DAC) to achieve the same effect. The PWM method
has the advantage that it drives the LED with the same current each time, but for different lengths of time.
This allows better control over the brightness, because LEDs do not necessarily exhibit a linear relationship
between the driving current and brightness.

3.12.3 The LCD and touch-sensor skin

Soldering and using the LCD and touch-sensor skin.

3.12. Tutorials requiring extra components 31

Micro Python Documentation, Выпуск 1.3.7

32 Глава 3. Micro Python tutorial

Micro Python Documentation, Выпуск 1.3.7

The following video shows how to solder the headers onto the LCD skin. At the end of the video, it shows
you how to correctly connect the LCD skin to the pyboard.

Using the LCD

To get started using the LCD, try the following at the Micro Python prompt. Make sure the LCD skin is
attached to the pyboard as pictured at the top of this page.

>>> import pyb
>>> lcd = pyb.LCD(’X’)
>>> lcd.light(True)
>>> lcd.write(’Hello uPy!\n’)

You can make a simple animation using the code:

import pyb
lcd = pyb.LCD(’X’)
lcd.light(True)
for x in range(-80, 128):

lcd.fill(0)
lcd.text(’Hello uPy!’, x, 10, 1)
lcd.show()
pyb.delay(25)

Using the touch sensor

To read the touch-sensor data you need to use the I2C bus. The MPR121 capacitive touch sensor has address
90.

3.12. Tutorials requiring extra components 33

Micro Python Documentation, Выпуск 1.3.7

To get started, try:

>>> import pyb
>>> i2c = pyb.I2C(1, pyb.I2C.MASTER)
>>> i2c.mem_write(4, 90, 0x5e)
>>> touch = i2c.mem_read(1, 90, 0)[0]

The first line above makes an I2C object, and the second line enables the 4 touch sensors. The third line
reads the touch status and the touch variable holds the state of the 4 touch buttons (A, B, X, Y).

There is a simple driver here which allows you to set the threshold and debounce parameters, and easily
read the touch status and electrode voltage levels. Copy this script to your pyboard (either flash or SD card,
in the top directory or lib/ directory) and then try:

>>> import pyb
>>> import mpr121
>>> m = mpr121.MPR121(pyb.I2C(1, pyb.I2C.MASTER))
>>> for i in range(100):
... print(m.touch_status())
... pyb.delay(100)
...

This will continuously print out the touch status of all electrodes. Try touching each one in turn.

Note that if you put the LCD skin in the Y-position, then you need to initialise the I2C bus using:

>>> m = mpr121.MPR121(pyb.I2C(2, pyb.I2C.MASTER))

There is also a demo which uses the LCD and the touch sensors together, and can be found here.

3.12.4 The AMP audio skin

Soldering and using the AMP audio skin.

34 Глава 3. Micro Python tutorial

http://micropython.org/resources/examples/mpr121.py
http://micropython.org/resources/examples/lcddemo.py

Micro Python Documentation, Выпуск 1.3.7

The following video shows how to solder the headers, microphone and speaker onto the AMP skin.

3.12. Tutorials requiring extra components 35

Micro Python Documentation, Выпуск 1.3.7

Example code

The AMP skin has a speaker which is connected to DAC(1) via a small power amplifier. The volume of the
amplifier is controlled by a digital potentiometer, which is an I2C device with address 46 on the IC2(1) bus.

To set the volume, define the following function:

import pyb
def volume(val):

pyb.I2C(1, pyb.I2C.MASTER).mem_write(val, 46, 0)

Then you can do:

>>> volume(0) # minimum volume
>>> volume(127) # maximum volume

To play a sound, use the write_timed method of the DAC object. For example:

import math
from pyb import DAC

create a buffer containing a sine-wave
buf = bytearray(100)
for i in range(len(buf)):

buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf)))

output the sine-wave at 400Hz
dac = DAC(1)
dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR)

You can also play WAV files using the Python wave module. You can get the wave module here and you will
also need the chunk module available here. Put these on your pyboard (either on the flash or the SD card in
the top-level directory). You will need an 8-bit WAV file to play, such as this one. Then you can do:

>>> import wave
>>> from pyb import DAC
>>> dac = DAC(1)
>>> f = wave.open(’test.wav’)
>>> dac.write_timed(f.readframes(f.getnframes()), f.getframerate())

This should play the WAV file.

3.13 Tips, tricks and useful things to know

3.13.1 Debouncing a pin input

A pin used as input from a switch or other mechanical device can have a lot of noise on it, rapidly changing
from low to high when the switch is first pressed or released. This noise can be eliminated using a capacitor
(a debouncing circuit). It can also be eliminated using a simple function that makes sure the value on the
pin is stable.

The following function does just this. It gets the current value of the given pin, and then waits for the value
to change. The new pin value must be stable for a continuous 20ms for it to register the change. You can
adjust this time (to say 50ms) if you still have noise.

import pyb

36 Глава 3. Micro Python tutorial

http://micropython.org/resources/examples/wave.py
http://micropython.org/resources/examples/chunk.py
http://micropython.org/resources/examples/test.wav

Micro Python Documentation, Выпуск 1.3.7

def wait_pin_change(pin):
wait for pin to change value
it needs to be stable for a continuous 20ms
cur_value = pin.value()
active = 0
while active < 20:

if pin.value() != cur_value:
active += 1

else:
active = 0

pyb.delay(1)

Use it something like this:

import pyb

pin_x1 = pyb.Pin(’X1’, pyb.Pin.IN, pyb.Pin.PULL_DOWN)
while True:

wait_pin_change(pin_x1)
pyb.LED(4).toggle()

3.13.2 Making a UART - USB pass through

It’s as simple as:

import pyb
import select

def pass_through(usb, uart):
while True:

select.select([usb, uart], [], [])
if usb.any():

uart.write(usb.read(256))
if uart.any():

usb.write(uart.read(256))

pass_through(pyb.USB_VCP(), pyb.UART(1, 9600))

3.13. Tips, tricks and useful things to know 37

Micro Python Documentation, Выпуск 1.3.7

38 Глава 3. Micro Python tutorial

Глава 4

Micro Python libraries

4.1 Python standard libraries

The following standard Python libraries are built in to Micro Python.

For additional libraries, please download them from the micropython-lib repository.

4.1.1 cmath – mathematical functions for complex numbers

The cmath module provides some basic mathematical funtions for working with complex numbers.

Functions

cmath.cos(z)
Return the cosine of z.

cmath.exp(z)
Return the exponential of z.

cmath.log(z)
Return the natural logarithm of z. The branch cut is along the negative real axis.

cmath.log10(z)
Return the base-10 logarithm of z. The branch cut is along the negative real axis.

cmath.phase(z)
Returns the phase of the number z, in the range (-pi, +pi].

cmath.polar(z)
Returns, as a tuple, the polar form of z.

cmath.rect(r, phi)
Returns the complex number with modulus r and phase phi.

cmath.sin(z)
Return the sine of z.

cmath.sqrt(z)
Return the square-root of z.

39

https://github.com/micropython/micropython-lib

Micro Python Documentation, Выпуск 1.3.7

Constants

cmath.e
base of the natural logarithm

cmath.pi
the ratio of a circle’s circumference to its diameter

4.1.2 gc – control the garbage collector

Functions

gc.enable()
Enable automatic garbage collection.

gc.disable()
Disable automatic garbage collection. Heap memory can still be allocated, and garbage collection can
still be initiated manually using gc.collect().

gc.collect()
Run a garbage collection.

gc.mem_alloc()
Return the number of bytes of heap RAM that are allocated.

gc.mem_free()
Return the number of bytes of available heap RAM.

4.1.3 math – mathematical functions

The math module provides some basic mathematical funtions for working with floating-point numbers.

Note: On the pyboard, floating-point numbers have 32-bit precision.

Functions

math.acos(x)
Return the inverse cosine of x.

math.acosh(x)
Return the inverse hyperbolic cosine of x.

math.asin(x)
Return the inverse sine of x.

math.asinh(x)
Return the inverse hyperbolic sine of x.

math.atan(x)
Return the inverse tangent of x.

math.atan2(y, x)
Return the principal value of the inverse tangent of y/x.

math.atanh(x)
Return the inverse hyperbolic tangent of x.

40 Глава 4. Micro Python libraries

Micro Python Documentation, Выпуск 1.3.7

math.ceil(x)
Return an integer, being x rounded towards positive infinity.

math.copysign(x, y)
Return x with the sign of y.

math.cos(x)
Return the cosine of x.

math.cosh(x)
Return the hyperbolic cosine of x.

math.degrees(x)
Return radians x converted to degrees.

math.erf(x)
Return the error function of x.

math.erfc(x)
Return the complementary error function of x.

math.exp(x)
Return the exponential of x.

math.expm1(x)
Return exp(x) - 1.

math.fabs(x)
Return the absolute value of x.

math.floor(x)
Return an integer, being x rounded towards negative infinity.

math.fmod(x, y)
Return the remainder of x/y.

math.frexp(x)
Converts a floating-point number to fractional and integral components.

math.gamma(x)
Return the gamma function of x.

math.isfinite(x)
Return True if x is finite.

math.isinf(x)
Return True if x is infinite.

math.isnan(x)
Return True if x is not-a-number

math.ldexp(x, exp)
Return x * (2**exp).

math.lgamma(x)
Return the natural logarithm of the gamma function of x.

math.log(x)
Return the natural logarithm of x.

math.log10(x)
Return the base-10 logarithm of x.

4.1. Python standard libraries 41

Micro Python Documentation, Выпуск 1.3.7

math.log2(x)
Return the base-2 logarithm of x.

math.modf(x)
Return a tuple of two floats, being the fractional and integral parts of x. Both return values have the
same sign as x.

math.pow(x, y)
Returns x to the power of y.

math.radians(x)
Return degrees x converted to radians.

math.sin(x)
Return the sine of x.

math.sinh(x)
Return the hyperbolic sine of x.

math.sqrt(x)
Return the square root of x.

math.tan(x)
Return the tangent of x.

math.tanh(x)
Return the hyperbolic tangent of x.

math.trunc(x)
Return an integer, being x rounded towards 0.

Constants

math.e
base of the natural logarithm

math.pi
the ratio of a circle’s circumference to its diameter

4.1.4 os – basic “operating system” services

The os module contains functions for filesystem access and urandom.

Pyboard specifics

The filesystem on the pyboard has / as the root directory and the available physical drives are accessible
from here. They are currently:

/flash – the internal flash filesystem

/sd – the SD card (if it exists)

On boot up, the current directory is /flash if no SD card is inserted, otherwise it is /sd.

42 Глава 4. Micro Python libraries

Micro Python Documentation, Выпуск 1.3.7

Functions

os.chdir(path)
Change current directory.

os.getcwd()
Get the current directory.

os.listdir([dir])
With no argument, list the current directory. Otherwise list the given directory.

os.mkdir(path)
Create a new directory.

os.remove(path)
Remove a file.

os.rmdir(path)
Remove a directory.

os.stat(path)
Get the status of a file or directory.

os.sync()
Sync all filesystems.

os.urandom(n)
Return a bytes object with n random bytes, generated by the hardware random number generator.

Constants

os.sep
separation character used in paths

4.1.5 select – wait for events on a set of streams

This module provides functions to wait for events on streams (select streams which are ready for operations).

Pyboard specifics

Polling is an efficient way of waiting for read/write activity on multiple objects. Current objects that support
polling are: pyb.UART, pyb.USB_VCP.

Functions

select.poll()
Create an instance of the Poll class.

select.select(rlist, wlist, xlist[, timeout])
Wait for activity on a set of objects.

This function is provided for compatibility and is not efficient. Usage of Poll is recommended instead.

4.1. Python standard libraries 43

Micro Python Documentation, Выпуск 1.3.7

class Poll

Methods

poll.register(obj [, eventmask])
Register obj for polling. eventmask is 1 for read, 2 for write, 3 for read-write.

poll.unregister(obj)
Unregister obj from polling.

poll.modify(obj, eventmask)
Modify the eventmask for obj.

poll.poll([timeout])
Wait for at least one of the registered objects to become ready. Returns list of ready objects, or empty
list on timeout.

Timeout is in milliseconds.

4.1.6 struct – pack and unpack primitive data types

See Python struct for more information.

Functions

struct.calcsize(fmt)
Return the number of bytes needed to store the given fmt.

struct.pack(fmt, v1, v2, ...)
Pack the values v1, v2, ... according to the format string fmt. The return value is a bytes object
encoding the values.

struct.unpack(fmt, data)
Unpack from the data according to the format string fmt. The return value is a tuple of the unpacked
values.

4.1.7 sys – system specific functions

Functions

sys.exit([retval])
Raise a SystemExit exception. If an argument is given, it is the value given to SystemExit.

Constants

sys.argv
a mutable list of arguments this program started with

sys.byteorder
the byte order of the system (“little” or “big”)

sys.path
a mutable list of directories to search for imported modules

44 Глава 4. Micro Python libraries

https://docs.python.org/3/library/struct.html

Micro Python Documentation, Выпуск 1.3.7

sys.platform
the platform that Micro Python is running on

sys.stderr
standard error (connected to USB VCP, and optional UART object)

sys.stdin
standard input (connected to USB VCP, and optional UART object)

sys.stdout
standard output (connected to USB VCP, and optional UART object)

sys.version
Python language version that this implementation conforms to, as a string

sys.version_info
Python language version that this implementation conforms to, as a tuple of ints

4.1.8 time – time related functions

The time module provides functions for getting the current time and date, and for sleeping.

Functions

time.localtime([secs])
Convert a time expressed in seconds since Jan 1, 2000 into an 8-tuple which contains: (year, month,
mday, hour, minute, second, weekday, yearday) If secs is not provided or None, then the current time
from the RTC is used. year includes the century (for example 2014).

•month is 1-12

•mday is 1-31

•hour is 0-23

•minute is 0-59

•second is 0-59

•weekday is 0-6 for Mon-Sun

•yearday is 1-366

time.mktime()
This is inverse function of localtime. It’s argument is a full 8-tuple which expresses a time as per
localtime. It returns an integer which is the number of seconds since Jan 1, 2000.

time.sleep(seconds)
Sleep for the given number of seconds. Seconds can be a floating-point number to sleep for a fractional
number of seconds.

time.time()
Returns the number of seconds, as an integer, since 1/1/2000.

4.2 Python micro-libraries

The following standard Python libraries have been “micro-ified” to fit in with the philosophy of Micro Python.
They provide the core functionality of that module and are intended to be a drop-in replacement for the

4.2. Python micro-libraries 45

Micro Python Documentation, Выпуск 1.3.7

standard Python library.

The modules are available by their u-name, and also by their non-u-name. The non-u-name can be overridden
by a file of that name in your package path. For example, import json will first search for a file json.py or
directory json and load that package if it is found. If nothing is found, it will fallback to loading the built-in
ujson module.

4.2.1 usocket – socket module

Socket functionality.

Functions

usocket.getaddrinfo(host, port)

usocket.socket(family=AF_INET, type=SOCK_STREAM, fileno=-1)
Create a socket.

4.2.2 uheapq – heap queue algorithm

This module implements the heap queue algorithm.

A heap queue is simply a list that has its elements stored in a certain way.

Functions

uheapq.heappush(heap, item)
Push the item onto the heap.

uheapq.heappop(heap)
Pop the first item from the heap, and return it. Raises IndexError if heap is empty.

uheapq.heapify(x)
Convert the list x into a heap. This is an in-place operation.

4.2.3 ujson – JSON encoding and decoding

This modules allows to convert between Python objects and the JSON data format.

Functions

ujson.dumps(obj)
Return obj represented as a JSON string.

ujson.loads(str)
Parse the JSON str and return an object. Raises ValueError if the string is not correctly formed.

4.3 Libraries specific to the pyboard

The following libraries are specific to the pyboard.

46 Глава 4. Micro Python libraries

Micro Python Documentation, Выпуск 1.3.7

4.3.1 pyb — functions related to the pyboard

The pyb module contains specific functions related to the pyboard.

Time related functions

pyb.delay(ms)
Delay for the given number of milliseconds.

pyb.udelay(us)
Delay for the given number of microseconds.

pyb.millis()
Returns the number of milliseconds since the board was last reset.

The result is always a micropython smallint (31-bit signed number), so after 2^30 milliseconds (about
12.4 days) this will start to return negative numbers.

pyb.micros()
Returns the number of microseconds since the board was last reset.

The result is always a micropython smallint (31-bit signed number), so after 2^30 microseconds (about
17.8 minutes) this will start to return negative numbers.

pyb.elapsed_millis(start)
Returns the number of milliseconds which have elapsed since start.

This function takes care of counter wrap, and always returns a positive number. This means it can be
used to measure periods upto about 12.4 days.

Example:

start = pyb.millis()
while pyb.elapsed_millis(start) < 1000:

Perform some operation

pyb.elapsed_micros(start)
Returns the number of microseconds which have elapsed since start.

This function takes care of counter wrap, and always returns a positive number. This means it can be
used to measure periods upto about 17.8 minutes.

Example:

start = pyb.micros()
while pyb.elapsed_micros(start) < 1000:

Perform some operation
pass

Reset related functions

pyb.hard_reset()
Resets the pyboard in a manner similar to pushing the external RESET button.

pyb.bootloader()
Activate the bootloader without BOOT* pins.

4.3. Libraries specific to the pyboard 47

Micro Python Documentation, Выпуск 1.3.7

Interrupt related functions

pyb.disable_irq()
Disable interrupt requests. Returns the previous IRQ state: False/True for disabled/enabled IRQs
respectively. This return value can be passed to enable_irq to restore the IRQ to its original state.

pyb.enable_irq(state=True)
Enable interrupt requests. If state is True (the default value) then IRQs are enabled. If state is
False then IRQs are disabled. The most common use of this function is to pass it the value returned
by disable_irq to exit a critical section.

Power related functions

pyb.freq([sys_freq])
If given no arguments, returns a tuple of clock frequencies: (SYSCLK, HCLK, PCLK1, PCLK2).

If given an argument, sets the system frequency to that value in Hz. Eg freq(120000000) gives 120MHz.
Note that not all values are supported and the largest supported frequency not greater than the given
sys_freq will be selected.

Supported frequencies are (in MHz): 8, 16, 24, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 72, 84, 96, 108,
120, 144, 168.

8MHz uses the HSE (external crystal) directly and 16MHz uses the HSI (internal oscillator) directly.
The higher frequencies use the HSE to drive the PLL (phase locked loop), and then use the output of
the PLL.

Note that if you change the frequency while the USB is enabled then the USB may become unreliable.
It is best to change the frequency in boot.py, before the USB peripheral is started. Also note that
frequencies below 36MHz do not allow the USB to function correctly.

pyb.wfi()
Wait for an interrupt. This executies a wfi instruction which reduces power consumption of the MCU
until an interrupt occurs, at which point execution continues.

pyb.standby()

pyb.stop()

Miscellaneous functions

pyb.have_cdc()
Return True if USB is connected as a serial device, False otherwise.

pyb.hid((buttons, x, y, z))
Takes a 4-tuple (or list) and sends it to the USB host (the PC) to signal a HID mouse-motion event.

pyb.info([dump_alloc_table])
Print out lots of information about the board.

pyb.repl_uart(uart)
Get or set the UART object that the REPL is repeated on.

pyb.rng()
Return a 30-bit hardware generated random number.

pyb.sync()
Sync all file systems.

48 Глава 4. Micro Python libraries

Micro Python Documentation, Выпуск 1.3.7

pyb.unique_id()
Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.

Classes

class Accel – accelerometer control

Accel is an object that controls the accelerometer. Example usage:

accel = pyb.Accel()
for i in range(10):

print(accel.x(), accel.y(), accel.z())

Raw values are between -32 and 31.

Constructors
class pyb.Accel

Create and return an accelerometer object.

Note: if you read accelerometer values immediately after creating this object you will get 0. It takes
around 20ms for the first sample to be ready, so, unless you have some other code between creating
this object and reading its values, you should put a pyb.delay(20) after creating it. For example:

accel = pyb.Accel()
pyb.delay(20)
print(accel.x())

Methods
accel.filtered_xyz()

Get a 3-tuple of filtered x, y and z values.
accel.tilt()

Get the tilt register.

accel.x()
Get the x-axis value.

accel.y()
Get the y-axis value.

accel.z()
Get the z-axis value.

class ADC – analog to digital conversion: read analog values on a pin

Usage:

import pyb

adc = pyb.ADC(pin) # create an analog object from a pin
val = adc.read() # read an analog value

adc = pyb.ADCAll(resolution) # creale an ADCAll object
val = adc.read_channel(channel) # read the given channel
val = adc.read_core_temp() # read MCU temperature

4.3. Libraries specific to the pyboard 49

Micro Python Documentation, Выпуск 1.3.7

val = adc.read_core_vbat() # read MCU VBAT
val = adc.read_core_vref() # read MCU VREF

Constructors
class pyb.ADC(pin)

Create an ADC object associated with the given pin. This allows you to then read analog values on
that pin.

Methods
adc.read()

Read the value on the analog pin and return it. The returned value will be between 0 and 4095.
adc.read_timed(buf, freq)

Read analog values into the given buffer at the given frequency. Buffer can be bytearray or array.array
for example. If a buffer with 8-bit elements is used, sample resolution will be reduced to 8 bits.

Example:

adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
buf = bytearray(100) # create a buffer of 100 bytes
adc.read_timed(buf, 10) # read analog values into buf at 10Hz

this will take 10 seconds to finish
for val in buf: # loop over all values

print(val) # print the value out

This function does not allocate any memory.

class CAN – controller area network communication bus

CAN implements the standard CAN communications protocol. At the physical level it consists of 2 lines:
RX and TX. Note that to connect the pyboard to a CAN bus you must use a CAN transceiver to convert
the CAN logic signals from the pyboard to the correct voltage levels on the bus.

Note that this driver does not yet support filter configuration (it defaults to a single filter that lets through
all messages), or bus timing configuration (except for setting the prescaler).

Example usage (works without anything connected):

from pyb import CAN
can = pyb.CAN(1, pyb.CAN.LOOPBACK)
can.send(’message!’, 123) # send message to id 123
can.recv(0) # receive message on FIFO 0

Constructors
class pyb.CAN(bus, ...)

Construct a CAN object on the given bus. bus can be 1-2, or ‘YA’ or ‘YB’. With no additional
parameters, the CAN object is created but not initialised (it has the settings from the last initialisation
of the bus, if any). If extra arguments are given, the bus is initialised. See init for parameters of
initialisation.

The physical pins of the CAN busses are:

•CAN(1) is on YA: (RX, TX) = (Y3, Y4) = (PB8, PB9)

•CAN(2) is on YB: (RX, TX) = (Y5, Y6) = (PB12, PB13)

50 Глава 4. Micro Python libraries

Micro Python Documentation, Выпуск 1.3.7

Methods
can.init(mode, extframe=False, prescaler=100, *, sjw=1, bs1=6, bs2=8)

Initialise the CAN bus with the given parameters:

•mode is one of: NORMAL, LOOPBACK, SILENT, SILENT_LOOPBACK

•if extframe is True then the bus uses extended identifiers in the frames (29 bits); otherwise it
uses standard 11 bit identifiers

•prescaler is used to set the duration of 1 time quanta; the time quanta will be the input clock
(PCLK1, see pyb.freq()) divided by the prescaler

•sjw is the resynchronisation jump width in units of the time quanta; it can be 1, 2, 3, 4

•bs1 defines the location of the sample point in units of the time quanta; it can be between 1 and
1024 inclusive

•bs2 defines the location of the transmit point in units of the time quanta; it can be between 1
and 16 inclusive

The time quanta tq is the basic unit of time for the CAN bus. tq is the CAN prescaler value divided
by PCLK1 (the frequency of internal peripheral bus 1); see pyb.freq() to determine PCLK1.

A single bit is made up of the synchronisation segment, which is always 1 tq. Then follows bit segment
1, then bit segment 2. The sample point is after bit segment 1 finishes. The transmit point is after bit
segment 2 finishes. The baud rate will be 1/bittime, where the bittime is 1 + BS1 + BS2 multiplied
by the time quanta tq.

For example, with PCLK1=42MHz, prescaler=100, sjw=1, bs1=6, bs2=8, the value of tq is 2.38
microseconds. The bittime is 35.7 microseconds, and the baudrate is 28kHz.

See page 680 of the STM32F405 datasheet for more details.
can.deinit()

Turn off the CAN bus.

can.any(fifo)
Return True if any message waiting on the FIFO, else False.

can.recv(fifo, *, timeout=5000)
Receive data on the bus:

•fifo is an integer, which is the FIFO to receive on

•timeout is the timeout in milliseconds to wait for the receive.

Return value: buffer of data bytes.

can.send(send, addr, *, timeout=5000)
Send a message on the bus:

•send is the data to send (an integer to send, or a buffer object).

•addr is the address to send to

•timeout is the timeout in milliseconds to wait for the send.

Return value: None.

Constants
CAN.NORMAL
CAN.LOOPBACK

CAN.SILENT

4.3. Libraries specific to the pyboard 51

Micro Python Documentation, Выпуск 1.3.7

CAN.SILENT_LOOPBACK
the mode of the CAN bus

class DAC – digital to analog conversion

The DAC is used to output analog values (a specific voltage) on pin X5 or pin X6. The voltage will be
between 0 and 3.3V.

This module will undergo changes to the API.

Example usage:

from pyb import DAC

dac = DAC(1) # create DAC 1 on pin X5
dac.write(128) # write a value to the DAC (makes X5 1.65V)

To output a continuous sine-wave:

import math
from pyb import DAC

create a buffer containing a sine-wave
buf = bytearray(100)
for i in range(len(buf)):

buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf)))

output the sine-wave at 400Hz
dac = DAC(1)
dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR)

Constructors
class pyb.DAC(port)

Construct a new DAC object.

port can be a pin object, or an integer (1 or 2). DAC(1) is on pin X5 and DAC(2) is on pin X6.

Methods
dac.noise(freq)

Generate a pseudo-random noise signal. A new random sample is written to the DAC output at the
given frequency.

dac.triangle(freq)
Generate a triangle wave. The value on the DAC output changes at the given frequency, and the
frequence of the repeating triangle wave itself is 256 (or 1024, need to check) times smaller.

dac.write(value)
Direct access to the DAC output (8 bit only at the moment).

dac.write_timed(data, freq, *, mode=DAC.NORMAL)
Initiates a burst of RAM to DAC using a DMA transfer. The input data is treated as an array of bytes
(8 bit data).

mode can be DAC.NORMAL or DAC.CIRCULAR.

TIM6 is used to control the frequency of the transfer.

52 Глава 4. Micro Python libraries

Micro Python Documentation, Выпуск 1.3.7

class ExtInt – configure I/O pins to interrupt on external events

There are a total of 22 interrupt lines. 16 of these can come from GPIO pins and the remaining 6 are from
internal sources.

For lines 0 thru 15, a given line can map to the corresponding line from an arbitrary port. So line 0 can map
to Px0 where x is A, B, C, ... and line 1 can map to Px1 where x is A, B, C, ...

def callback(line):
print("line =", line)

Note: ExtInt will automatically configure the gpio line as an input.

extint = pyb.ExtInt(pin, pyb.ExtInt.IRQ_FALLING, pyb.Pin.PULL_UP, callback)

Now every time a falling edge is seen on the X1 pin, the callback will be called. Caution: mechanical
pushbuttons have “bounce” and pushing or releasing a switch will often generate multiple edges. See:
http://www.eng.utah.edu/~cs5780/debouncing.pdf for a detailed explanation, along with various techniques
for debouncing.

Trying to register 2 callbacks onto the same pin will throw an exception.

If pin is passed as an integer, then it is assumed to map to one of the internal interrupt sources, and must
be in the range 16 thru 22.

All other pin objects go through the pin mapper to come up with one of the gpio pins.

extint = pyb.ExtInt(pin, mode, pull, callback)

Valid modes are pyb.ExtInt.IRQ_RISING, pyb.ExtInt.IRQ_FALLING,
pyb.ExtInt.IRQ_RISING_FALLING, pyb.ExtInt.EVT_RISING, pyb.ExtInt.EVT_FALLING, and
pyb.ExtInt.EVT_RISING_FALLING.

Only the IRQ_xxx modes have been tested. The EVT_xxx modes have something to do with sleep mode
and the WFE instruction.

Valid pull values are pyb.Pin.PULL_UP, pyb.Pin.PULL_DOWN, pyb.Pin.PULL_NONE.

There is also a C API, so that drivers which require EXTI interrupt lines can also use this code. See extint.h
for the available functions and usrsw.h for an example of using this.

Constructors
class pyb.ExtInt(pin, mode, pull, callback)

Create an ExtInt object:

•pin is the pin on which to enable the interrupt (can be a pin object or any valid pin name).

•mode can be one of: - ExtInt.IRQ_RISING - trigger on a rising edge; - ExtInt.IRQ_FALLING -
trigger on a falling edge; - ExtInt.IRQ_RISING_FALLING - trigger on a rising or falling edge.

•pull can be one of: - pyb.Pin.PULL_NONE - no pull up or down resistors; - pyb.Pin.PULL_UP -
enable the pull-up resistor; - pyb.Pin.PULL_DOWN - enable the pull-down resistor.

•callback is the function to call when the interrupt triggers. The callback function must accept
exactly 1 argument, which is the line that triggered the interrupt.

Class methods
ExtInt.regs()

Dump the values of the EXTI registers.

4.3. Libraries specific to the pyboard 53

http://www.eng.utah.edu/~cs5780/debouncing.pdf

Micro Python Documentation, Выпуск 1.3.7

Methods
extint.disable()

Disable the interrupt associated with the ExtInt object. This could be useful for debouncing.
extint.enable()

Enable a disabled interrupt.

extint.line()
Return the line number that the pin is mapped to.

extint.swint()
Trigger the callback from software.

Constants
ExtInt.IRQ_FALLING

interrupt on a falling edge
ExtInt.IRQ_RISING

interrupt on a rising edge

ExtInt.IRQ_RISING_FALLING
interrupt on a rising or falling edge

class I2C – a two-wire serial protocol

I2C is a two-wire protocol for communicating between devices. At the physical level it consists of 2 wires:
SCL and SDA, the clock and data lines respectively.

I2C objects are created attached to a specific bus. They can be initialised when created, or initialised later
on:

from pyb import I2C

i2c = I2C(1) # create on bus 1
i2c = I2C(1, I2C.MASTER) # create and init as a master
i2c.init(I2C.MASTER, baudrate=20000) # init as a master
i2c.init(I2C.SLAVE, addr=0x42) # init as a slave with given address
i2c.deinit() # turn off the peripheral

Printing the i2c object gives you information about its configuration.

Basic methods for slave are send and recv:

i2c.send(’abc’) # send 3 bytes
i2c.send(0x42) # send a single byte, given by the number
data = i2c.recv(3) # receive 3 bytes

To receive inplace, first create a bytearray:

data = bytearray(3) # create a buffer
i2c.recv(data) # receive 3 bytes, writing them into data

You can specify a timeout (in ms):

i2c.send(b’123’, timeout=2000) # timout after 2 seconds

A master must specify the recipient’s address:

54 Глава 4. Micro Python libraries

Micro Python Documentation, Выпуск 1.3.7

i2c.init(I2C.MASTER)
i2c.send(’123’, 0x42) # send 3 bytes to slave with address 0x42
i2c.send(b’456’, addr=0x42) # keyword for address

Master also has other methods:

i2c.is_ready(0x42) # check if slave 0x42 is ready
i2c.scan() # scan for slaves on the bus, returning

a list of valid addresses
i2c.mem_read(3, 0x42, 2) # read 3 bytes from memory of slave 0x42,

starting at address 2 in the slave
i2c.mem_write(’abc’, 0x42, 2, timeout=1000)

Constructors
class pyb.I2C(bus, ...)

Construct an I2C object on the given bus. bus can be 1 or 2. With no additional parameters, the I2C
object is created but not initialised (it has the settings from the last initialisation of the bus, if any).
If extra arguments are given, the bus is initialised. See init for parameters of initialisation.

The physical pins of the I2C busses are:

•I2C(1) is on the X position: (SCL, SDA) = (X9, X10) = (PB6, PB7)

•I2C(2) is on the Y position: (SCL, SDA) = (Y9, Y10) = (PB10, PB11)

Methods
i2c.deinit()

Turn off the I2C bus.
i2c.init(mode, *, addr=0x12, baudrate=400000, gencall=False)

Initialise the I2C bus with the given parameters:

•mode must be either I2C.MASTER or I2C.SLAVE

•addr is the 7-bit address (only sensible for a slave)

•baudrate is the SCL clock rate (only sensible for a master)

•gencall is whether to support general call mode

i2c.is_ready(addr)
Check if an I2C device responds to the given address. Only valid when in master mode.

i2c.mem_read(data, addr, memaddr, timeout=5000, addr_size=8)
Read from the memory of an I2C device:

•data can be an integer (number of bytes to read) or a buffer to read into

•addr is the I2C device address

•memaddr is the memory location within the I2C device

•timeout is the timeout in milliseconds to wait for the read

•addr_size selects width of memaddr: 8 or 16 bits

Returns the read data. This is only valid in master mode.

i2c.mem_write(data, addr, memaddr, timeout=5000, addr_size=8)
Write to the memory of an I2C device:

•data can be an integer or a buffer to write from

4.3. Libraries specific to the pyboard 55

Micro Python Documentation, Выпуск 1.3.7

•addr is the I2C device address

•memaddr is the memory location within the I2C device

•timeout is the timeout in milliseconds to wait for the write

•addr_size selects width of memaddr: 8 or 16 bits

Returns None. This is only valid in master mode.

i2c.recv(recv, addr=0x00, timeout=5000)
Receive data on the bus:

•recv can be an integer, which is the number of bytes to receive, or a mutable buffer, which will
be filled with received bytes

•addr is the address to receive from (only required in master mode)

•timeout is the timeout in milliseconds to wait for the receive

Return value: if recv is an integer then a new buffer of the bytes received, otherwise the same buffer
that was passed in to recv.

i2c.scan()
Scan all I2C addresses from 0x01 to 0x7f and return a list of those that respond. Only valid when in
master mode.

i2c.send(send, addr=0x00, timeout=5000)
Send data on the bus:

•send is the data to send (an integer to send, or a buffer object)

•addr is the address to send to (only required in master mode)

•timeout is the timeout in milliseconds to wait for the send

Return value: None.

Constants
I2C.MASTER

for initialising the bus to master mode
I2C.SLAVE

for initialising the bus to slave mode

class LCD – LCD control for the LCD touch-sensor pyskin

The LCD class is used to control the LCD on the LCD touch-sensor pyskin, LCD32MKv1.0. The LCD is a
128x32 pixel monochrome screen, part NHD-C12832A1Z.

The pyskin must be connected in either the X or Y positions, and then an LCD object is made using:

lcd = pyb.LCD(’X’) # if pyskin is in the X position
lcd = pyb.LCD(’Y’) # if pyskin is in the Y position

Then you can use:

lcd.light(True) # turn the backlight on
lcd.write(’Hello world!\n’) # print text to the screen

This driver implements a double buffer for setting/getting pixels. For example, to make a bouncing dot, try:

56 Глава 4. Micro Python libraries

Micro Python Documentation, Выпуск 1.3.7

x = y = 0
dx = dy = 1
while True:

update the dot’s position
x += dx
y += dy

make the dot bounce of the edges of the screen
if x <= 0 or x >= 127: dx = -dx
if y <= 0 or y >= 31: dy = -dy

lcd.fill(0) # clear the buffer
lcd.pixel(x, y, 1) # draw the dot
lcd.show() # show the buffer
pyb.delay(50) # pause for 50ms

Constructors
class pyb.LCD(skin_position)

Construct an LCD object in the given skin position. skin_position can be ‘X’ or ‘Y’, and should
match the position where the LCD pyskin is plugged in.

Methods
lcd.command(instr_data, buf)

Send an arbitrary command to the LCD. Pass 0 for instr_data to send an instruction, otherwise pass
1 to send data. buf is a buffer with the instructions/data to send.

lcd.contrast(value)
Set the contrast of the LCD. Valid values are between 0 and 47.

lcd.fill(colour)
Fill the screen with the given colour (0 or 1 for white or black).

This method writes to the hidden buffer. Use show() to show the buffer.

lcd.get(x, y)
Get the pixel at the position (x, y). Returns 0 or 1.

This method reads from the visible buffer.

lcd.light(value)
Turn the backlight on/off. True or 1 turns it on, False or 0 turns it off.

lcd.pixel(x, y, colour)
Set the pixel at (x, y) to the given colour (0 or 1).

This method writes to the hidden buffer. Use show() to show the buffer.

lcd.show()
Show the hidden buffer on the screen.

lcd.text(str, x, y, colour)
Draw the given text to the position (x, y) using the given colour (0 or 1).

This method writes to the hidden buffer. Use show() to show the buffer.

lcd.write(str)
Write the string str to the screen. It will appear immediately.

4.3. Libraries specific to the pyboard 57

Micro Python Documentation, Выпуск 1.3.7

class LED – LED object

The LED object controls an individual LED (Light Emitting Diode).

Constructors
class pyb.LED(id)

Create an LED object associated with the given LED:

•id is the LED number, 1-4.

Methods
led.intensity([value])

Get or set the LED intensity. Intensity ranges between 0 (off) and 255 (full on). If no argument is
given, return the LED intensity. If an argument is given, set the LED intensity and return None.

led.off()
Turn the LED off.

led.on()
Turn the LED on.

led.toggle()
Toggle the LED between on and off.

class Pin – control I/O pins

A pin is the basic object to control I/O pins. It has methods to set the mode of the pin (input, output, etc)
and methods to get and set the digital logic level. For analog control of a pin, see the ADC class.

Usage Model:

All Board Pins are predefined as pyb.Pin.board.Name

x1_pin = pyb.Pin.board.X1

g = pyb.Pin(pyb.Pin.board.X1, pyb.Pin.IN)

CPU pins which correspond to the board pins are available as pyb.cpu.Name. For the CPU pins, the names
are the port letter followed by the pin number. On the PYBv1.0, pyb.Pin.board.X1 and pyb.Pin.cpu.B6
are the same pin.

You can also use strings:

g = pyb.Pin(’X1’, pyb.Pin.OUT_PP)

Users can add their own names:

MyMapperDict = { ’LeftMotorDir’ : pyb.Pin.cpu.C12 }
pyb.Pin.dict(MyMapperDict)
g = pyb.Pin("LeftMotorDir", pyb.Pin.OUT_OD)

and can query mappings

pin = pyb.Pin("LeftMotorDir")

Users can also add their own mapping function:

58 Глава 4. Micro Python libraries

Micro Python Documentation, Выпуск 1.3.7

def MyMapper(pin_name):
if pin_name == "LeftMotorDir":

return pyb.Pin.cpu.A0

pyb.Pin.mapper(MyMapper)

So, if you were to call: pyb.Pin("LeftMotorDir pyb.Pin.OUT_PP) then "LeftMotorDir" is passed directly
to the mapper function.

To summarise, the following order determines how things get mapped into an ordinal pin number:

1. Directly specify a pin object

2. User supplied mapping function

3. User supplied mapping (object must be usable as a dictionary key)

4. Supply a string which matches a board pin

5. Supply a string which matches a CPU port/pin

You can set pyb.Pin.debug(True) to get some debug information about how a particular object gets mapped
to a pin.

When a pin has the Pin.PULL_UP or Pin.PULL_DOWN pull-mode enabled, that pin has an effective 40k Ohm
resistor pulling it to 3V3 or GND respectively (except pin Y5 which has 11k Ohm resistors).

Constructors
class pyb.Pin(id, ...)

Create a new Pin object associated with the id. If additional arguments are given, they are used to
initialise the pin. See pin.init().

Class methods
Pin.af_list()

Returns an array of alternate functions available for this pin.
Pin.debug([state])

Get or set the debugging state (True or False for on or off).

Pin.dict([dict])
Get or set the pin mapper dictionary.

Pin.mapper([fun])
Get or set the pin mapper function.

Methods
pin.init(mode, pull=Pin.PULL_NONE, af=-1)

Initialise the pin:

•mode can be one of: - Pin.IN - configure the pin for input; - Pin.OUT_PP - configure the pin
for output, with push-pull control; - Pin.OUT_OD - configure the pin for output, with open-drain
control; - Pin.AF_PP - configure the pin for alternate function, pull-pull; - Pin.AF_OD - configure
the pin for alternate function, open-drain; - Pin.ANALOG - configure the pin for analog.

•pull can be one of: - Pin.PULL_NONE - no pull up or down resistors; - Pin.PULL_UP - enable the
pull-up resistor; - Pin.PULL_DOWN - enable the pull-down resistor.

•when mode is Pin.AF_PP or Pin.AF_OD, then af can be the index or name of one of the alternate
functions associated with a pin.

4.3. Libraries specific to the pyboard 59

Micro Python Documentation, Выпуск 1.3.7

Returns: None.
pin.high()

Set the pin to a high logic level.

pin.low()
Set the pin to a low logic level.

pin.value([value])
Get or set the digital logic level of the pin:

•With no argument, return 0 or 1 depending on the logic level of the pin.

•With value given, set the logic level of the pin. value can be anything that converts to a boolean.
If it converts to True, the pin is set high, otherwise it is set low.

pin.__str__()
Return a string describing the pin object.

pin.af()
Returns the currently configured alternate-function of the pin. The integer returned will match one of
the allowed constants for the af argument to the init function.

pin.gpio()
Returns the base address of the GPIO block associated with this pin.

pin.mode()
Returns the currently configured mode of the pin. The integer returned will match one of the allowed
constants for the mode argument to the init function.

pin.name()
Get the pin name.

pin.names()
Returns the cpu and board names for this pin.

pin.pin()
Get the pin number.

pin.port()
Get the pin port.

pin.pull()
Returns the currently configured pull of the pin. The integer returned will match one of the allowed
constants for the pull argument to the init function.

Constants
Pin.AF_OD

initialise the pin to alternate-function mode with an open-drain drive
Pin.AF_PP

initialise the pin to alternate-function mode with a push-pull drive

Pin.ANALOG
initialise the pin to analog mode

Pin.IN
initialise the pin to input mode

Pin.OUT_OD
initialise the pin to output mode with an open-drain drive

Pin.OUT_PP
initialise the pin to output mode with a push-pull drive

60 Глава 4. Micro Python libraries

Micro Python Documentation, Выпуск 1.3.7

Pin.PULL_DOWN
enable the pull-down resistor on the pin

Pin.PULL_NONE
don’t enable any pull up or down resistors on the pin

Pin.PULL_UP
enable the pull-up resistor on the pin

class PinAF – Pin Alternate Functions

A Pin represents a physical pin on the microcprocessor. Each pin can have a variety of functions (GPIO,
I2C SDA, etc). Each PinAF object represents a particular function for a pin.

Usage Model:

x3 = pyb.Pin.board.X3
x3_af = x3.af_list()

x3_af will now contain an array of PinAF objects which are availble on pin X3.

For the pyboard, x3_af would contain: [Pin.AF1_TIM2, Pin.AF2_TIM5, Pin.AF3_TIM9,
Pin.AF7_USART2]

Normally, each peripheral would configure the af automatically, but sometimes the same function is available
on multiple pins, and having more control is desired.

To configure X3 to expose TIM2_CH3, you could use:

pin = pyb.Pin(pyb.Pin.board.X3, mode=pyb.Pin.AF_PP, af=pyb.Pin.AF1_TIM2)

or:

pin = pyb.Pin(pyb.Pin.board.X3, mode=pyb.Pin.AF_PP, af=1)

Methods
pinaf.__str__()

Return a string describing the alternate function.
pinaf.index()

Return the alternate function index.

pinaf.name()
Return the name of the alternate function.

pinaf.reg()
Return the base register associated with the peripheral assigned to this alternate function. For example,
if the alternate function were TIM2_CH3 this would return stm.TIM2

class RTC – real time clock

The RTC is and independent clock that keeps track of the date and time.

Example usage:

rtc = pyb.RTC()
rtc.datetime((2014, 5, 1, 4, 13, 0, 0, 0))
print(rtc.datetime())

4.3. Libraries specific to the pyboard 61

Micro Python Documentation, Выпуск 1.3.7

Constructors
class pyb.RTC

Create an RTC object.

Methods
rtc.datetime([datetimetuple])

Get or set the date and time of the RTC.

With no arguments, this method returns an 8-tuple with the current date and time. With 1 argument
(being an 8-tuple) it sets the date and time.

The 8-tuple has the following format:

(year, month, day, weekday, hours, minutes, seconds, subseconds)

weekday is 1-7 for Monday through Sunday.

subseconds counts down from 255 to 0
rtc.info()

Get information about the startup time and reset source.

•The lower 0xffff are the number of milliseconds the RTC took to start up.

•Bit 0x10000 is set if a power-on reset occurred.

•Bit 0x20000 is set if an external reset occurred

class Servo – 3-wire hobby servo driver

Servo controls standard hobby servos with 3-wires (ground, power, signal).

Constructors
class pyb.Servo(id)

Create a servo object. id is 1-4.

Methods
servo.angle([angle, time=0])

Get or set the angle of the servo.

•angle is the angle to move to in degrees.

•time is the number of milliseconds to take to get to the specified angle.
servo.calibration([pulse_min, pulse_max, pulse_centre[, pulse_angle_90, pulse_speed_100]])

Get or set the calibration of the servo timing.

servo.pulse_width([value])
Get or set the pulse width in milliseconds.

servo.speed([speed, time=0])
Get or set the speed of a continuous rotation servo.

•speed is the speed to move to change to, between -100 and 100.

•time is the number of milliseconds to take to get to the specified speed.

62 Глава 4. Micro Python libraries

Micro Python Documentation, Выпуск 1.3.7

class SPI – a master-driven serial protocol

SPI is a serial protocol that is driven by a master. At the physical level there are 3 lines: SCK, MOSI, MISO.

See usage model of I2C; SPI is very similar. Main difference is parameters to init the SPI bus:

from pyb import SPI
spi = SPI(1, SPI.MASTER, baudrate=600000, polarity=1, phase=0, crc=0x7)

Only required parameter is mode, SPI.MASTER or SPI.SLAVE. Polarity can be 0 or 1, and is the level the
idle clock line sits at. Phase can be 0 or 1 to sample data on the first or second clock edge respectively. Crc
can be None for no CRC, or a polynomial specifier.

Additional method for SPI:

data = spi.send_recv(b’1234’) # send 4 bytes and receive 4 bytes
buf = bytearray(4)
spi.send_recv(b’1234’, buf) # send 4 bytes and receive 4 into buf
spi.send_recv(buf, buf) # send/recv 4 bytes from/to buf

Constructors
class pyb.SPI(bus, ...)

Construct an SPI object on the given bus. bus can be 1 or 2. With no additional parameters, the SPI
object is created but not initialised (it has the settings from the last initialisation of the bus, if any).
If extra arguments are given, the bus is initialised. See init for parameters of initialisation.

The physical pins of the SPI busses are:

•SPI(1) is on the X position: (NSS, SCK, MISO, MOSI) = (X5, X6, X7, X8) = (PA4, PA5,
PA6, PA7)

•SPI(2) is on the Y position: (NSS, SCK, MISO, MOSI) = (Y5, Y6, Y7, Y8) = (PB12, PB13,
PB14, PB15)

At the moment, the NSS pin is not used by the SPI driver and is free for other use.

Methods
spi.deinit()

Turn off the SPI bus.
spi.init(mode, baudrate=328125, *, polarity=1, phase=0, bits=8, firstbit=SPI.MSB, ti=False,

crc=None)
Initialise the SPI bus with the given parameters:

•mode must be either SPI.MASTER or SPI.SLAVE.

•baudrate is the SCK clock rate (only sensible for a master).

spi.recv(recv, *, timeout=5000)
Receive data on the bus:

•recv can be an integer, which is the number of bytes to receive, or a mutable buffer, which will
be filled with received bytes.

•timeout is the timeout in milliseconds to wait for the receive.

Return value: if recv is an integer then a new buffer of the bytes received, otherwise the same buffer
that was passed in to recv.

spi.send(send, *, timeout=5000)
Send data on the bus:

4.3. Libraries specific to the pyboard 63

Micro Python Documentation, Выпуск 1.3.7

•send is the data to send (an integer to send, or a buffer object).

•timeout is the timeout in milliseconds to wait for the send.

Return value: None.

spi.send_recv(send, recv=None, *, timeout=5000)
Send and receive data on the bus at the same time:

•send is the data to send (an integer to send, or a buffer object).

•recv is a mutable buffer which will be filled with received bytes. It can be the same as send, or
omitted. If omitted, a new buffer will be created.

•timeout is the timeout in milliseconds to wait for the receive.

Return value: the buffer with the received bytes.

Constants
SPI.MASTER
SPI.SLAVE

for initialising the SPI bus to master or slave mode

SPI.LSB

SPI.MSB
set the first bit to be the least or most significant bit

class Switch – switch object

A Switch object is used to control a push-button switch.

Usage:

sw = pyb.Switch() # create a switch object
sw() # get state (True if pressed, False otherwise)
sw.callback(f) # register a callback to be called when the

switch is pressed down
sw.callback(None) # remove the callback

Example:

pyb.Switch().callback(lambda: pyb.LED(1).toggle())

Constructors
class pyb.Switch

Create and return a switch object.

Methods
switch()

Return the switch state: True if pressed down, False otherwise.
switch.callback(fun)

Register the given function to be called when the switch is pressed down. If fun is None, then it disables
the callback.

64 Глава 4. Micro Python libraries

Micro Python Documentation, Выпуск 1.3.7

class Timer – control internal timers

Timers can be used for a great variety of tasks. At the moment, only the simplest case is implemented: that
of calling a function periodically.

Each timer consists of a counter that counts up at a certain rate. The rate at which it counts is the peripheral
clock frequency (in Hz) divided by the timer prescaler. When the counter reaches the timer period it triggers
an event, and the counter resets back to zero. By using the callback method, the timer event can call a
Python function.

Example usage to toggle an LED at a fixed frequency:

tim = pyb.Timer(4) # create a timer object using timer 4
tim.init(freq=2) # trigger at 2Hz
tim.callback(lambda t:pyb.LED(1).toggle())

Further examples:

tim = pyb.Timer(4, freq=100) # freq in Hz
tim = pyb.Timer(4, prescaler=0, period=99)
tim.counter() # get counter (can also set)
tim.prescaler(2) # set prescaler (can also get)
tim.period(199) # set period (can also get)
tim.callback(lambda t: ...) # set callback for update interrupt (t=tim instance)
tim.callback(None) # clear callback

Note: Timer 3 is reserved for internal use. Timer 5 controls the servo driver, and Timer 6 is used for timed
ADC/DAC reading/writing. It is recommended to use the other timers in your programs.

Constructors
class pyb.Timer(id, ...)

Construct a new timer object of the given id. If additional arguments are given, then the timer is
initialised by init(...). id can be 1 to 14, excluding 3.

Methods
timer.callback(fun)

Set the function to be called when the timer triggers. fun is passed 1 argument, the timer object. If
fun is None then the callback will be disabled.

timer.channel(channel, mode, ...)
If only a channel number is passed, then a previously initialized channel object is returned (or None if
there is no previous channel).

Othwerwise, a TimerChannel object is initialized and returned.

Each channel can be configured to perform pwm, output compare, or input capture. All channels share
the same underlying timer, which means that they share the same timer clock.

Keyword arguments:

•mode can be one of:

–Timer.PWM — configure the timer in PWM mode (active high).

–Timer.PWM_INVERTED — configure the timer in PWM mode (active low).

–Timer.OC_TIMING — indicates that no pin is driven.

–Timer.OC_ACTIVE — the pin will be made active when a compare match occurs (active is
determined by polarity)

4.3. Libraries specific to the pyboard 65

Micro Python Documentation, Выпуск 1.3.7

–Timer.OC_INACTIVE — the pin will be made inactive when a compare match occurs.

–Timer.OC_TOGGLE — the pin will be toggled when an compare match occurs.

–Timer.OC_FORCED_ACTIVE — the pin is forced active (compare match is ignored).

–Timer.OC_FORCED_INACTIVE — the pin is forced inactive (compare match is ignored).

–Timer.IC — configure the timer in Input Capture mode.

•callback - as per TimerChannel.callback()

•pin None (the default) or a Pin object. If specified (and not None) this will cause the alternate
function of the the indicated pin to be configured for this timer channel. An error will be raised
if the pin doesn’t support any alternate functions for this timer channel.

Keyword arguments for Timer.PWM modes:

•pulse_width - determines the initial pulse width value to use.

•pulse_width_percent - determines the initial pulse width percentage to use.

Keyword arguments for Timer.OC modes:

•compare - determines the initial value of the compare register.

•polarity can be one of: - Timer.HIGH - output is active high - Timer.LOW - output is acive low

Optional keyword arguments for Timer.IC modes:

•polarity can be one of: - Timer.RISING - captures on rising edge. - Timer.FALLING -
captures on falling edge. - Timer.BOTH - captures on both edges.

Note that capture only works on the primary channel, and not on the complimentary
channels.

PWM Example:

timer = pyb.Timer(2, freq=1000)
ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=210000)
ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=420000)

timer.counter([value])
Get or set the timer counter.

timer.deinit()
Deinitialises the timer.

Disables the callback (and the associated irq). Disables any channel callbacks (and the associated irq).
Stops the timer, and disables the timer peripheral.

timer.freq([value])
Get or set the frequency for the timer (changes prescaler and period if set).

timer.init(*, freq, prescaler, period)
Initialise the timer. Initialisation must be either by frequency (in Hz) or by prescaler and period:

tim.init(freq=100) # set the timer to trigger at 100Hz
tim.init(prescaler=83, period=999) # set the prescaler and period directly

Keyword arguments:

•freq — specifies the periodic frequency of the timer. You migh also view this as the
frequency with which the timer goes through one complete cycle.

66 Глава 4. Micro Python libraries

Micro Python Documentation, Выпуск 1.3.7

•prescaler [0-0xffff] - specifies the value to be loaded into the timer’s Prescaler Register
(PSC). The timer clock source is divided by (prescaler + 1) to arrive at the timer
clock. Timers 2-7 and 12-14 have a clock source of 84 MHz (pyb.freq()[2] * 2), and
Timers 1, and 8-11 have a clock source of 168 MHz (pyb.freq()[3] * 2).

•period [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5. Specifies the
value to be loaded into the timer’s AutoReload Register (ARR). This determines the
period of the timer (i.e. when the counter cycles). The timer counter will roll-over after
period + 1 timer clock cycles.

•mode can be one of:

–Timer.UP - configures the timer to count from 0 to ARR (default)

–Timer.DOWN - configures the timer to count from ARR down to 0.

–Timer.CENTER - confgures the timer to count from 0 to ARR and then back down
to 0.

•div can be one of 1, 2, or 4. Divides the timer clock to determine the sampling clock
used by the digital filters.

•callback - as per Timer.callback()

•deadtime - specifies the amount of “dead” or inactive time between transitions on
complimentary channels (both channels will be inactive) for this time). deadtime may
be an integer between 0 and 1008, with the following restrictions: 0-128 in steps of 1.
128-256 in steps of 2, 256-512 in steps of 8, and 512-1008 in steps of 16. deadime measures
ticks of source_freq divided by div clock ticks. deadtime is only available on timers 1
and 8.

You must either specify freq or both of period and prescaler.

timer.period([value])
Get or set the period of the timer.

timer.prescaler([value])
Get or set the prescaler for the timer.

timer.source_freq()
Get the frequency of the source of the timer.

class TimerChannel — setup a channel for a timer

Timer channels are used to generate/capture a signal using a timer.

TimerChannel objects are created using the Timer.channel() method.

Methods
timerchannel.callback(fun)

Set the function to be called when the timer channel triggers. fun is passed 1 argument, the timer
object. If fun is None then the callback will be disabled.

timerchannel.capture([value])
Get or set the capture value associated with a channel. capture, compare, and pulse_width are all
aliases for the same function. capture is the logical name to use when the channel is in input capture
mode.

timerchannel.compare([value])
Get or set the compare value associated with a channel. capture, compare, and pulse_width are all

4.3. Libraries specific to the pyboard 67

Micro Python Documentation, Выпуск 1.3.7

aliases for the same function. compare is the logical name to use when the channel is in output compare
mode.

timerchannel.pulse_width([value])
Get or set the pulse width value associated with a channel. capture, compare, and pulse_width are
all aliases for the same function. pulse_width is the logical name to use when the channel is in PWM
mode.

In edge aligned mode, a pulse_width of period + 1 corresponds to a duty cycle of 100% In center
aligned mode, a pulse width of period corresponds to a duty cycle of 100%

timerchannel.pulse_width_percent([value])
Get or set the pulse width percentage associated with a channel. The value is a number between 0
and 100 and sets the percentage of the timer period for which the pulse is active. The value can be an
integer or floating-point number for more accuracy. For example, a value of 25 gives a duty cycle of
25%.

class UART – duplex serial communication bus

UART implements the standard UART/USART duplex serial communications protocol. At the physical
level it consists of 2 lines: RX and TX. The unit of communication is a character (not to be confused with
a string character) which can be 8 or 9 bits wide.

UART objects can be created and initialised using:

from pyb import UART

uart = UART(1, 9600) # init with given baudrate
uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters

Bits can be 7, 8 or 9. Parity can be None, 0 (even) or 1 (odd). Stop can be 1 or 2.

Note: with parity=None, only 8 and 9 bits are supported. With parity enabled, only 7 and 8 bits are
supported.

A UART object acts like a stream object and reading and writing is done using the standard stream methods:

uart.read(10) # read 10 characters, returns a bytes object
uart.readall() # read all available characters
uart.readline() # read a line
uart.readinto(buf) # read and store into the given buffer
uart.write(’abc’) # write the 3 characters

Individual characters can be read/written using:

uart.readchar() # read 1 character and returns it as an integer
uart.writechar(42) # write 1 character

To check if there is anything to be read, use:

uart.any() # returns True if any characters waiting

Note: The stream functions read, write etc Are new in Micro Python since v1.3.4. Earlier versions use
uart.send and uart.recv.

Constructors

68 Глава 4. Micro Python libraries

Micro Python Documentation, Выпуск 1.3.7

class pyb.UART(bus, ...)
Construct a UART object on the given bus. bus can be 1-6, or ‘XA’, ‘XB’, ‘YA’, or ‘YB’. With no
additional parameters, the UART object is created but not initialised (it has the settings from the
last initialisation of the bus, if any). If extra arguments are given, the bus is initialised. See init for
parameters of initialisation.

The physical pins of the UART busses are:

•UART(4) is on XA: (TX, RX) = (X1, X2) = (PA0, PA1)

•UART(1) is on XB: (TX, RX) = (X9, X10) = (PB6, PB7)

•UART(6) is on YA: (TX, RX) = (Y1, Y2) = (PC6, PC7)

•UART(3) is on YB: (TX, RX) = (Y9, Y10) = (PB10, PB11)

•UART(2) is on: (TX, RX) = (X3, X4) = (PA2, PA3)

Methods
uart.init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0,

read_buf_len=64)
Initialise the UART bus with the given parameters:

•baudrate is the clock rate.

•bits is the number of bits per character, 7, 8 or 9.

•parity is the parity, None, 0 (even) or 1 (odd).

•stop is the number of stop bits, 1 or 2.

•timeout is the timeout in milliseconds to wait for the first character.

•timeout_char is the timeout in milliseconds to wait between characters.

•read_buf_len is the character length of the read buffer (0 to disable).

Note: with parity=None, only 8 and 9 bits are supported. With parity enabled, only 7 and 8 bits are
supported.

uart.deinit()
Turn off the UART bus.

uart.any()
Return True if any characters waiting, else False.

uart.read([nbytes])
Read characters. If nbytes is specified then read at most that many bytes.

Note: for 9 bit characters each character takes two bytes, nbytes must be even, and the number of
characters is nbytes/2.

Return value: a bytes object containing the bytes read in. Returns b’’ on timeout.

uart.readall()
Read as much data as possible.

Return value: a bytes object.

uart.readchar()
Receive a single character on the bus.

Return value: The character read, as an integer. Returns -1 on timeout.

4.3. Libraries specific to the pyboard 69

Micro Python Documentation, Выпуск 1.3.7

uart.readinto(buf [, nbytes])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at
most len(buf) bytes.

Return value: number of bytes read and stored into buf.

uart.readline()
Read a line, ending in a newline character.

Return value: the line read.

uart.write(buf)
Write the buffer of bytes to the bus. If characters are 7 or 8 bits wide then each byte is one character.
If characters are 9 bits wide then two bytes are used for each character (little endian), and buf must
contain an even number of bytes.

Return value: number of bytes written.

uart.writechar(char)
Write a single character on the bus. char is an integer to write. Return value: None.

class USB_VCP – USB virtual comm port

The USB_VCP class allows creation of an object representing the USB virtual comm port. It can be used
to read and write data over USB to the connected host.

Constructors
class pyb.USB_VCP

Create a new USB_VCP object.

Methods
usb_vcp.any()

Return True if any characters waiting, else False.
usb_vcp.close()

usb_vcp.read([nbytes])
usb_vcp.readall()

usb_vcp.readline()

usb_vcp.recv(data, *, timeout=5000)
Receive data on the bus:

•data can be an integer, which is the number of bytes to receive, or a mutable buffer, which will
be filled with received bytes.

•timeout is the timeout in milliseconds to wait for the receive.

Return value: if data is an integer then a new buffer of the bytes received, otherwise the number of
bytes read into data is returned.

usb_vcp.send(data, *, timeout=5000)
Send data over the USB VCP:

•data is the data to send (an integer to send, or a buffer object).

•timeout is the timeout in milliseconds to wait for the send.

Return value: number of bytes sent.

70 Глава 4. Micro Python libraries

Micro Python Documentation, Выпуск 1.3.7

usb_vcp.write(buf)

4.3.2 network — network configuration

This module provides network drivers and routing configuration.

class CC3k

Constructors

class network.CC3k(spi, pin_cs, pin_en, pin_irq)
Initialise the CC3000 using the given SPI bus and pins and return a CC3k object.

Methods

cc3k.connect(ssid, key=None, *, security=WPA2, bssid=None)

class WIZnet5k

This class allows you to control WIZnet5x00 Ethernet adaptors based on the W5200 and W5500 chipsets
(only W5200 tested).

Example usage:

import wiznet5k
w = wiznet5k.WIZnet5k()
print(w.ipaddr())
w.gethostbyname(’micropython.org’)
s = w.socket()
s.connect((’192.168.0.2’, 8080))
s.send(’hello’)
print(s.recv(10))

Constructors

class network.WIZnet5k(spi, pin_cs, pin_rst)
Create and return a WIZnet5k object.

Methods

wiznet5k.ipaddr([(ip, subnet, gateway, dns)])
Get/set IP address, subnet mask, gateway and DNS.

wiznet5k.regs()
Dump WIZnet5k registers.

4.3. Libraries specific to the pyboard 71

Micro Python Documentation, Выпуск 1.3.7

72 Глава 4. Micro Python libraries

Глава 5

The pyboard hardware

• PYBv1.0 schematics and layout (2.4MiB PDF)

• PYBv1.0 metric dimensions (360KiB PDF)

• PYBv1.0 imperial dimensions (360KiB PDF)

73

http://micropython.org/resources/PYBv10b.pdf
http://micropython.org/resources/PYBv10b-metric-dimensions.pdf
http://micropython.org/resources/PYBv10b-imperial-dimensions.pdf

Micro Python Documentation, Выпуск 1.3.7

74 Глава 5. The pyboard hardware

Глава 6

Datasheets for the components on the pyboard

• The microcontroller: STM32F405RGT6 (link to manufacturer’s site)

• The accelerometer: Freescale MMA7660 (800kiB PDF)

• The LDO voltage regulator: Microchip MCP1802 (400kiB PDF)

75

http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN1035/PF252144
http://micropython.org/resources/datasheets/MMA7660FC.pdf
http://micropython.org/resources/datasheets/MCP1802-22053C.pdf

Micro Python Documentation, Выпуск 1.3.7

76 Глава 6. Datasheets for the components on the pyboard

Глава 7

Datasheets for other components

• The LCD display on the LCD touch-sensor skin: Newhaven Display NHD-C12832A1Z-FSW-FBW-3V3
(460KiB PDF)

• The touch sensor chip on the LCD touch-sensor skin: Freescale MPR121 (280KiB PDF)

• The digital potentiometer on the audio skin: Microchip MCP4541 (2.7MiB PDF)

77

http://micropython.org/resources/datasheets/NHD-C12832A1Z-FSW-FBW-3V3.pdf
http://micropython.org/resources/datasheets/MPR121.pdf
http://micropython.org/resources/datasheets/MCP4541-22107B.pdf

Micro Python Documentation, Выпуск 1.3.7

78 Глава 7. Datasheets for other components

Глава 8

Micro Python license information

The MIT License (MIT)

Copyright (c) 2013, 2014 Damien P. George, and others

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

79

Micro Python Documentation, Выпуск 1.3.7

80 Глава 8. Micro Python license information

Глава 9

Micro Python documentation contents

9.1 Quick reference for the pyboard

9.1.1 General board control

See pyb.

import pyb

pyb.delay(50) # wait 50 milliseconds
pyb.millis() # number of milliseconds since bootup
pyb.repl_uart(pyb.UART(1, 9600)) # duplicate REPL on UART(1)
pyb.wfi() # pause CPU, waiting for interrupt
pyb.freq() # get CPU and bus frequencies
pyb.freq(60000000) # set CPU freq to 60MHz
pyb.stop() # stop CPU, waiting for external interrupt

9.1.2 LEDs

See pyb.LED .

from pyb import LED

led = LED(1) # red led
led.toggle()
led.on()
led.off()

9.1.3 Pins and GPIO

See pyb.Pin.

from pyb import Pin

p_out = Pin(’X1’, Pin.OUT_PP)
p_out.high()
p_out.low()

p_in = Pin(’X2’, Pin.IN, Pin.PULL_UP)
p_in.value() # get value, 0 or 1

81

Micro Python Documentation, Выпуск 1.3.7

9.1.4 External interrupts

See pyb.ExtInt .

from pyb import Pin, ExtInt

callback = lambda e: print("intr")
ext = ExtInt(Pin(’Y1’), ExtInt.IRQ_RISING, Pin.PULL_NONE, callback)

9.1.5 Timers

See pyb.Timer .

from pyb import Timer

tim = Timer(1, freq=1000)
tim.counter() # get counter value
tim.freq(0.5) # 0.5 Hz
tim.callback(lambda t: pyb.LED(1).toggle())

9.1.6 PWM (pulse width modulation)

See pyb.Pin and pyb.Timer .

from pyb import Pin, Timer

p = Pin(’X1’) # X1 has TIM2, CH1
tim = Timer(2, freq=1000)
ch = tim.channel(1, Timer.PWM, pin=p)
ch.pulse_width_percent(50)

9.1.7 ADC (analog to digital conversion)

See pyb.Pin and pyb.ADC .

from pyb import Pin, ADC

adc = ADC(Pin(’X19’))
adc.read() # read value, 0-4095

9.1.8 DAC (digital to analog conversion)

See pyb.Pin and pyb.DAC .

from pyb import Pin, DAC

dac = DAC(Pin(’X5’))
dac.write(120) # output between 0 and 255

82 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

9.1.9 UART (serial bus)

See pyb.UART .

from pyb import UART

uart = UART(1, 9600)
uart.write(’hello’)
uart.read(5) # read up to 5 bytes

9.1.10 SPI bus

See pyb.SPI .

from pyb import SPI

spi = SPI(1, SPI.MASTER, baudrate=200000, polarity=1, phase=0)
spi.send(’hello’)
spi.recv(5) # receive 5 bytes on the bus
spi.send_recv(’hello’) # send a receive 5 bytes

9.1.11 I2C bus

See pyb.I2C .

from pyb import I2C

i2c = I2C(1, I2C.MASTER, baudrate=100000)
i2c.scan() # returns list of slave addresses
i2c.send(’hello’, 0x42) # send 5 bytes to slave with address 0x42
i2c.recv(5, 0x42) # receive 5 bytes from slave
i2c.mem_read(2, 0x42, 0x10) # read 2 bytes from slave 0x42, slave memory 0x10
i2c.mem_write(’xy’, 0x42, 0x10) # write 2 bytes to slave 0x42, slave memory 0x10

9.2 General information about the pyboard

9.2.1 Local filesystem and SD card

There is a small internal filesystem (a drive) on the pyboard, called /flash, which is stored within the
microcontroller’s flash memory. If a micro SD card is inserted into the slot, it is available as /sd.

When the pyboard boots up, it needs to choose a filesystem to boot from. If there is no SD card, then it
uses the internal filesystem /flash as the boot filesystem, otherwise, it uses the SD card /sd.

(Note that on older versions of the board, /flash is called 0:/ and /sd is called 1:/).

The boot filesystem is used for 2 things: it is the filesystem from which the boot.py and main.py files are
searched for, and it is the filesystem which is made available on your PC over the USB cable.

The filesystem will be available as a USB flash drive on your PC. You can save files to the drive, and edit
boot.py and main.py.

Remember to eject (on Linux, unmount) the USB drive before you reset your pyboard.

9.2. General information about the pyboard 83

Micro Python Documentation, Выпуск 1.3.7

9.2.2 Boot modes

If you power up normally, or press the reset button, the pyboard will boot into standard mode: the boot.py
file will be executed first, then the USB will be configured, then main.py will run.

You can override this boot sequence by holding down the user switch as the board is booting up. Hold down
user switch and press reset, and then as you continue to hold the user switch, the LEDs will count in binary.
When the LEDs have reached the mode you want, let go of the user switch, the LEDs for the selected mode
will flash quickly, and the board will boot.

The modes are:

1. Green LED only, standard boot : run boot.py then main.py.

2. Orange LED only, safe boot : don’t run any scripts on boot-up.

3. Green and orange LED together, filesystem reset : resets the flash filesystem to its factory state, then
boots in safe mode.

If your filesystem becomes corrupt, boot into mode 3 to fix it.

9.2.3 Errors: flashing LEDs

There are currently 2 kinds of errors that you might see:

1. If the red and green LEDs flash alternatively, then a Python script (eg main.py) has an
error. Use the REPL to debug it.

2. If all 4 LEDs cycle on and off slowly, then there was a hard fault. This cannot be recovered from and
you need to do a hard reset.

9.3 Micro Python tutorial

This tutorial is intended to get you started with your pyboard. All you need is a pyboard and a micro-USB
cable to connect it to your PC. If it is your first time, it is recommended to follow the tutorial through in
the order below.

9.3.1 Introduction to the pyboard

To get the most out of your pyboard, there are a few basic things to understand about how it works.

Caring for your pyboard

Because the pyboard does not have a housing it needs a bit of care:

• Be gentle when plugging/unplugging the USB cable. Whilst the USB connector is soldered through
the board and is relatively strong, if it breaks off it can be very difficult to fix.

• Static electricity can shock the components on the pyboard and destroy them. If you experience a lot
of static electricity in your area (eg dry and cold climates), take extra care not to shock the pyboard. If
your pyboard came in a black plastic box, then this box is the best way to store and carry the pyboard
as it is an anti-static box (it is made of a conductive plastic, with conductive foam inside).

84 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

As long as you take care of the hardware, you should be okay. It’s almost impossible to break the software on
the pyboard, so feel free to play around with writing code as much as you like. If the filesystem gets corrupt,
see below on how to reset it. In the worst case you might need to reflash the Micro Python software, but
that can be done over USB.

Layout of the pyboard

The micro USB connector is on the top right, the micro SD card slot on the top left of the board. There are
4 LEDs between the SD slot and USB connector. The colours are: red on the bottom, then green, orange,
and blue on the top. There are 2 switches: the right one is the reset switch, the left is the user switch.

Plugging in and powering on

The pyboard can be powered via USB. Connect it to your PC via a micro USB cable. There is only one way
that the cable will fit. Once connected, the green LED on the board should flash quickly.

Powering by an external power source

The pyboard can be powered by a battery or other external power source.

Be sure to connect the positive lead of the power supply to VIN, and ground to GND. There
is no polarity protection on the pyboard so you must be careful when connecting anything to
VIN.

The input voltage must be between 3.6V and 10V.

9.3.2 Running your first script

Let’s jump right in and get a Python script running on the pyboard. After all, that’s what it’s all about!

Connecting your pyboard

Connect your pyboard to your PC (Windows, Mac or Linux) with a micro USB cable. There is only one way
that the cable will connect, so you can’t get it wrong.

9.3. Micro Python tutorial 85

Micro Python Documentation, Выпуск 1.3.7

When the pyboard is connected to your PC it will power on and enter the start up process (the boot process).
The green LED should light up for half a second or less, and when it turns off it means the boot process has
completed.

86 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

Opening the pyboard USB drive

Your PC should now recognise the pyboard. It depends on the type of PC you have as to what happens
next:

• Windows: Your pyboard will appear as a removable USB flash drive. Windows may automatically
pop-up a window, or you may need to go there using Explorer.

Windows will also see that the pyboard has a serial device, and it will try to automatically configure
this device. If it does, cancel the process. We will get the serial device working in the next tutorial.

• Mac: Your pyboard will appear on the desktop as a removable disc. It will probably be called
“NONAME”. Click on it to open the pyboard folder.

• Linux: Your pyboard will appear as a removable medium. On Ubuntu it will mount automatically and
pop-up a window with the pyboard folder. On other Linux distributions, the pyboard may be mounted
automatically, or you may need to do it manually. At a terminal command line, type lsblk to see a
list of connected drives, and then mount /dev/sdb1 (replace sdb1 with the appropriate device). You
may need to be root to do this.

Okay, so you should now have the pyboard connected as a USB flash drive, and a window (or command line)
should be showing the files on the pyboard drive.

The drive you are looking at is known as /flash by the pyboard, and should contain the following 4 files:

• boot.py – this script is executed when the pyboard boots up. It sets up various
configuration options for the pyboard.

• main.py – this is the main script that will contain your Python program. It is executed
after boot.py.

• README.txt – this contains some very basic information about getting started with the
pyboard.

• pybcdc.inf – this is a Windows driver file to configure the serial USB device. More about
this in the next tutorial.

Editing main.py

Now we are going to write our Python program, so open the main.py file in a text editor. On Windows you
can use notepad, or any other editor. On Mac and Linux, use your favourite text editor. With the file open
you will see it contains 1 line:

main.py -- put your code here!

This line starts with a # character, which means that it is a comment. Such lines will not do anything, and
are there for you to write notes about your program.

Let’s add 2 lines to this main.py file, to make it look like this:

main.py -- put your code here!
import pyb
pyb.LED(4).on()

The first line we wrote says that we want to use the pyb module. This module contains all the functions and
classes to control the features of the pyboard.

The second line that we wrote turns the blue LED on: it first gets the LED class from the pyb module, creates
LED number 4 (the blue LED), and then turns it on.

9.3. Micro Python tutorial 87

http://micropython.org/resources/fresh-pyboard/boot.py
http://micropython.org/resources/fresh-pyboard/main.py
http://micropython.org/resources/fresh-pyboard/README.txt
http://micropython.org/resources/fresh-pyboard/pybcdc.inf

Micro Python Documentation, Выпуск 1.3.7

Resetting the pyboard

To run this little script, you need to first save and close the main.py file, and then eject (or unmount) the
pyboard USB drive. Do this like you would a normal USB flash drive.

When the drive is safely ejected/unmounted you can get to the fun part: press the RST switch on the pyboard
to reset and run your script. The RST switch is the small black button just below the USB connector on the
board, on the right edge.

When you press RST the green LED will flash quickly, and then the blue LED should turn on and stay on.

Congratulations! You have written and run your very first Micro Python program!

9.3.3 Getting a Micro Python REPL prompt

REPL stands for Read Evaluate Print Loop, and is the name given to the interactive Micro Python prompt
that you can access on the pyboard. Using the REPL is by far the easiest way to test out your code and run
commands. You can use the REPL in addition to writing scripts in main.py.

To use the REPL, you must connect to the serial USB device on the pyboard. How you do this depends on
your operating system.

Windows

You need to install the pyboard driver to use the serial USB device. The driver is on the pyboard’s USB
flash drive, and is called pybcdc.inf.

To install this driver you need to go to Device Manager for your computer, find the pyboard in the list of
devices (it should have a warning sign next to it because it’s not working yet), right click on the pyboard
device, select Properties, then Install Driver. You need to then select the option to find the driver manually
(don’t use Windows auto update), navigate to the pyboard’s USB drive, and select that. It should then
install. After installing, go back to the Device Manager to find the installed pyboard, and see which COM
port it is (eg COM4).

You now need to run your terminal program. You can use HyperTerminal if you have it installed, or download
the free program PuTTY: putty.exe. Using your serial program you must connect to the COM port that you
found in the previous step. With PuTTY, click on “Session” in the left-hand panel, then click the “Serial”
radio button on the right, then enter you COM port (eg COM4) in the “Serial Line” box. Finally, click the
“Open” button.

Mac OS X

Open a terminal and run:

screen /dev/tty.usbmodem*

When you are finished and want to exit screen, type CTRL-A CTRL-\.

Linux

Open a terminal and run:

screen /dev/ttyACM0

88 Глава 9. Micro Python documentation contents

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Micro Python Documentation, Выпуск 1.3.7

You can also try picocom or minicom instead of screen. You may have to use /dev/ttyACM1 or a higher
number for ttyACM. And, you may need to give yourself the correct permissions to access this devices (eg
group uucp or dialout, or use sudo).

Using the REPL prompt

Now let’s try running some Micro Python code directly on the pyboard.

With your serial program open (PuTTY, screen, picocom, etc) you may see a blank screen with a flashing
cursor. Press Enter and you should be presented with a Micro Python prompt, i.e. >>>. Let’s make sure it
is working with the obligatory test:

>>> print("hello pyboard!")
hello pyboard!

In the above, you should not type in the >>> characters. They are there to indicate that you should type
the text after it at the prompt. In the end, once you have entered the text print("hello pyboard!") and
pressed Enter, the output on your screen should look like it does above.

If you already know some python you can now try some basic commands here.

If any of this is not working you can try either a hard reset or a soft reset; see below.

Go ahead and try typing in some other commands. For example:

>>> pyb.LED(1).on()
>>> pyb.LED(2).on()
>>> 1 + 2
3
>>> 1 / 2
0.5
>>> 20 * ’py’
’py’

Resetting the board

If something goes wrong, you can reset the board in two ways. The first is to press CTRL-D at the Micro
Python prompt, which performs a soft reset. You will see a message something like

>>>
PYB: sync filesystems
PYB: soft reboot
Micro Python v1.0 on 2014-05-03; PYBv1.0 with STM32F405RG
Type "help()" for more information.
>>>

If that isn’t working you can perform a hard reset (turn-it-off-and-on-again) by pressing the RST switch (the
small black button closest to the micro-USB socket on the board). This will end your session, disconnecting
whatever program (PuTTY, screen, etc) that you used to connect to the pyboard.

If you are going to do a hard-reset, it’s recommended to first close your serial program and eject/unmount
the pyboard drive.

9.3.4 Turning on LEDs and basic Python concepts

The easiest thing to do on the pyboard is to turn on the LEDs attached to the board. Connect the board, and
log in as described in tutorial 1. We will start by turning and LED on in the interpreter, type the following

9.3. Micro Python tutorial 89

Micro Python Documentation, Выпуск 1.3.7

>>> myled = pyb.LED(1)
>>> myled.on()
>>> myled.off()

These commands turn the LED on and off.

This is all very well but we would like this process to be automated. Open the file MAIN.PY on the pyboard
in your favourite text editor. Write or paste the following lines into the file. If you are new to python, then
make sure you get the indentation correct since this matters!

led = pyb.LED(2)
while True:

led.toggle()
pyb.delay(1000)

When you save, the red light on the pyboard should turn on for about a second. To run the script, do a soft
reset (CTRL-D). The pyboard will then restart and you should see a green light continuously flashing on
and off. Success, the first step on your path to building an army of evil robots! When you are bored of the
annoying flashing light then press CTRL-C at your terminal to stop it running.

So what does this code do? First we need some terminology. Python is an object-oriented language, almost
everything in python is a class and when you create an instance of a class you get an object. Classes have
methods associated to them. A method (also called a member function) is used to interact with or control
the object.

The first line of code creates an LED object which we have then called led. When we create the object, it
takes a single parameter which must be between 1 and 4, corresponding to the 4 LEDs on the board. The
pyb.LED class has three important member functions that we will use: on(), off() and toggle(). The other
function that we use is pyb.delay() this simply waits for a given time in miliseconds. Once we have created
the LED object, the statement while True: creates an infinite loop which toggles the led between on and off
and waits for 1 second.

Exercise: Try changing the time between toggling the led and turning on a different LED.

Exercise: Connect to the pyboard directly, create a pyb.LED object and turn it on using the
on() method.

A Disco on your pyboard

So far we have only used a single LED but the pyboard has 4 available. Let’s start by creating an object for
each LED so we can control each of them. We do that by creating a list of LEDS with a list comprehension.

leds = [pyb.LED(i) for i in range(1,5)]

If you call pyb.LED() with a number that isn’t 1,2,3,4 you will get an error message. Next we will set up an
infinite loop that cycles through each of the LEDs turning them on and off.

n = 0
while True:

n = (n + 1) % 4
leds[n].toggle()
pyb.delay(50)

Here, n keeps track of the current LED and every time the loop is executed we cycle to the next n (the %
sign is a modulus operator that keeps n between 0 and 4.) Then we access the nth LED and toggle it. If you
run this you should see each of the LEDs turning on then all turning off again in sequence.

90 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

One problem you might find is that if you stop the script and then start it again that the LEDs are stuck on
from the previous run, ruining our carefully choreographed disco. We can fix this by turning all the LEDs
off when we initialise the script and then using a try/finally block. When you press CTRL-C, Micro Python
generates a VCPInterrupt exception. Exceptions normally mean something has gone wrong and you can use
a try: command to “catch” an exception. In this case it is just the user interrupting the script, so we don’t
need to catch the error but just tell Micro Python what to do when we exit. The finally block does this, and
we use it to make sure all the LEDs are off. The full code is:

leds = [pyb.LED(i) for i in range(1,5)]
for l in leds:

l.off()

n = 0
try:

while True:
n = (n + 1) % 4
leds[n].toggle()
pyb.delay(50)

finally:
for l in leds:

l.off()

The Fourth Special LED

The blue LED is special. As well as turning it on and off, you can control the intensity using the intensity()
method. This takes a number between 0 and 255 that determines how bright it is. The following script makes
the blue LED gradually brighter then turns it off again.

led = pyb.LED(4)
intensity = 0
while True:

intensity = (intensity + 1) % 255
led.intensity(intensity)
pyb.delay(20)

You can call intensity() on the other LEDs but they can only be off or on. 0 sets them off and any other
number up to 255 turns them on.

9.3.5 The Switch, callbacks and interrupts

The pyboard has 2 small switches, labelled USR and RST. The RST switch is a hard-reset switch, and if
you press it then it restarts the pyboard from scratch, equivalent to turning the power off then back on.

The USR switch is for general use, and is controlled via a Switch object. To make a switch object do:

>>> sw = pyb.Switch()

Remember that you may need to type import pyb if you get an error that the name pyb does not exist.

With the switch object you can get its status:

>>> sw()
False

This will print False if the switch is not held, or True if it is held. Try holding the USR switch down while
running the above command.

9.3. Micro Python tutorial 91

Micro Python Documentation, Выпуск 1.3.7

Switch callbacks

The switch is a very simple object, but it does have one advanced feature: the sw.callback() function. The
callback function sets up something to run when the switch is pressed, and uses an interrupt. It’s probably
best to start with an example before understanding how interrupts work. Try running the following at the
prompt:

>>> sw.callback(lambda:print(’press!’))

This tells the switch to print press! each time the switch is pressed down. Go ahead and try it: press the
USR switch and watch the output on your PC. Note that this print will interrupt anything you are typing,
and is an example of an interrupt routine running asynchronously.

As another example try:

>>> sw.callback(lambda:pyb.LED(1).toggle())

This will toggle the red LED each time the switch is pressed. And it will even work while other code is
running.

To disable the switch callback, pass None to the callback function:

>>> sw.callback(None)

You can pass any function (that takes zero arguments) to the switch callback. Above we used the lambda
feature of Python to create an anonymous function on the fly. But we could equally do:

>>> def f():
... pyb.LED(1).toggle()
...
>>> sw.callback(f)

This creates a function called f and assigns it to the switch callback. You can do things this way when your
function is more complicated than a lambda will allow.

Note that your callback functions must not allocate any memory (for example they cannot create a tuple or
list). Callback functions should be relatively simple. If you need to make a list, make it beforehand and store
it in a global variable (or make it local and close over it). If you need to do a long, complicated calculation,
then use the callback to set a flag which some other code then responds to.

Technical details of interrupts

Let’s step through the details of what is happening with the switch callback. When you register a function
with sw.callback(), the switch sets up an external interrupt trigger (falling edge) on the pin that the switch
is connected to. This means that the microcontroller will listen on the pin for any changes, and the following
will occur:

1. When the switch is pressed a change occurs on the pin (the pin goes from low to high), and the
microcontroller registers this change.

2. The microcontroller finishes executing the current machine instruction, stops execution, and saves its
current state (pushes the registers on the stack). This has the effect of pausing any code, for example
your running Python script.

3. The microcontroller starts executing the special interrupt handler associated with the switch’s external
trigger. This interrupt handler get the function that you registered with sw.callback() and executes
it.

4. Your callback function is executed until it finishes, returning control to the switch interrupt handler.

92 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

5. The switch interrupt handler returns, and the microcontroller is notified that the interrupt has been
dealt with.

6. The microcontroller restores the state that it saved in step 2.

7. Execution continues of the code that was running at the beginning. Apart from the pause, this code
does not notice that it was interrupted.

The above sequence of events gets a bit more complicated when multiple interrupts occur at the same time.
In that case, the interrupt with the highest priority goes first, then the others in order of their priority. The
switch interrupt is set at the lowest priority.

9.3.6 The accelerometer

Here you will learn how to read the accelerometer and signal using LEDs states like tilt left and tilt right.

Using the accelerometer

The pyboard has an accelerometer (a tiny mass on a tiny spring) that can be used to detect the angle of
the board and motion. There is a different sensor for each of the x, y, z directions. To get the value of the
accelerometer, create a pyb.Accel() object and then call the x() method.

>>> accel = pyb.Accel()
>>> accel.x()
7

This returns a signed integer with a value between around -30 and 30. Note that the measurement is very
noisy, this means that even if you keep the board perfectly still there will be some variation in the number
that you measure. Because of this, you shouldn’t use the exact value of the x() method but see if it is in a
certain range.

We will start by using the accelerometer to turn on a light if it is not flat.

accel = pyb.Accel()
light = pyb.LED(3)
SENSITIVITY = 3

while True:
x = accel.x()
if abs(x) > SENSITIVITY:

light.on()
else:

light.off()

pyb.delay(100)

We create Accel and LED objects, then get the value of the x direction of the accelerometer. If the magnitude
of x is bigger than a certain value SENSITIVITY, then the LED turns on, otherwise it turns off. The loop has
a small pyb.delay() otherwise the LED flashes annoyingly when the value of x is close to SENSITIVITY.
Try running this on the pyboard and tilt the board left and right to make the LED turn on and off.

Exercise: Change the above script so that the blue LED gets brighter the more you tilt the
pyboard. HINT: You will need to rescale the values, intensity goes from 0-255.

9.3. Micro Python tutorial 93

Micro Python Documentation, Выпуск 1.3.7

Making a spirit level

The example above is only sensitive to the angle in the x direction but if we use the y() value and more
LEDs we can turn the pyboard into a spirit level.

xlights = (pyb.LED(2), pyb.LED(3))
ylights = (pyb.LED(1), pyb.LED(4))

accel = pyb.Accel()
SENSITIVITY = 3

while True:
x = accel.x()
if x > SENSITIVITY:

xlights[0].on()
xlights[1].off()

elif x < -SENSITIVITY:
xlights[1].on()
xlights[0].off()

else:
xlights[0].off()
xlights[1].off()

y = accel.y()
if y > SENSITIVITY:

ylights[0].on()
ylights[1].off()

elif y < -SENSITIVITY:
ylights[1].on()
ylights[0].off()

else:
ylights[0].off()
ylights[1].off()

pyb.delay(100)

We start by creating a tuple of LED objects for the x and y directions. Tuples are immutable objects in
python which means they can’t be modified once they are created. We then proceed as before but turn
on a different LED for positive and negative x values. We then do the same for the y direction. This isn’t
particularly sophisticated but it does the job. Run this on your pyboard and you should see different LEDs
turning on depending on how you tilt the board.

9.3.7 Safe mode and factory reset

If something goes wrong with your pyboard, don’t panic! It is almost impossible for you to break the pyboard
by programming the wrong thing.

The first thing to try is to enter safe mode: this temporarily skips execution of boot.py and main.py and
gives default USB settings.

If you have problems with the filesystem you can do a factory reset, which restores the filesystem to its
original state.

Safe mode

To enter safe mode, do the following steps:

94 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

1. Connect the pyboard to USB so it powers up.

2. Hold down the USR switch.

3. While still holding down USR, press and release the RST switch.

4. The LEDs will then cycle green to orange to green+orange and back again.

5. Keep holding down USR until only the orange LED is lit, and then let go of the USR switch.

6. The orange LED should flash quickly 4 times, and then turn off.

7. You are now in safe mode.

In safe mode, the boot.py and main.py files are not executed, and so the pyboard boots up with default
settings. This means you now have access to the filesystem (the USB drive should appear), and you can edit
boot.py and main.py to fix any problems.

Entering safe mode is temporary, and does not make any changes to the files on the pyboard.

Factory reset the filesystem

If you pyboard’s filesystem gets corrupted (for example, you forgot to eject/unmount it), or you have some
code in boot.py or main.py which you can’t escape from, then you can reset the filesystem.

Resetting the filesystem deletes all files on the internal pyboard storage (not the SD card), and restores the
files boot.py, main.py, README.txt and pybcdc.inf back to their original state.

To do a factory reset of the filesystem you follow a similar procedure as you did to enter safe mode, but
release USR on green+orange:

1. Connect the pyboard to USB so it powers up.

2. Hold down the USR switch.

3. While still holding down USR, press and release the RST switch.

4. The LEDs will then cycle green to orange to green+orange and back again.

5. Keep holding down USR until both the green and orange LEDs are lit, and then let go of the USR
switch.

6. The green and orange LEDs should flash quickly 4 times.

7. The red LED will turn on (so red, green and orange are now on).

8. The pyboard is now resetting the filesystem (this takes a few seconds).

9. The LEDs all turn off.

10. You now have a reset filesystem, and are in safe mode.

11. Press and release the RST switch to boot normally.

9.3.8 Making the pyboard act as a USB mouse

The pyboard is a USB device, and can configured to act as a mouse instead of the default USB flash drive.

To do this we must first edit the boot.py file to change the USB configuration. If you have not yet touched
your boot.py file then it will look something like this:

9.3. Micro Python tutorial 95

Micro Python Documentation, Выпуск 1.3.7

boot.py -- run on boot-up
can run arbitrary Python, but best to keep it minimal

import pyb
#pyb.main(’main.py’) # main script to run after this one
#pyb.usb_mode(’CDC+MSC’) # act as a serial and a storage device
#pyb.usb_mode(’CDC+HID’) # act as a serial device and a mouse

To enable the mouse mode, uncomment the last line of the file, to make it look like:

pyb.usb_mode(’CDC+HID’) # act as a serial device and a mouse

If you already changed your boot.py file, then the minimum code it needs to work is:

import pyb
pyb.usb_mode(’CDC+HID’)

This tells the pyboard to configure itself as a CDC (serial) and HID (human interface device, in our case a
mouse) USB device when it boots up.

Eject/unmount the pyboard drive and reset it using the RST switch. Your PC should now detect the pyboard
as a mouse!

Sending mouse events by hand

To get the py-mouse to do anything we need to send mouse events to the PC. We will first do this manually
using the REPL prompt. Connect to your pyboard using your serial program and type the following:

>>> pyb.hid((0, 10, 0, 0))

Your mouse should move 10 pixels to the right! In the command above you are sending 4 pieces of information:
button status, x, y and scroll. The number 10 is telling the PC that the mouse moved 10 pixels in the x
direction.

Let’s make the mouse oscillate left and right:

>>> import math
>>> def osc(n, d):
... for i in range(n):
... pyb.hid((0, int(20 * math.sin(i / 10)), 0, 0))
... pyb.delay(d)
...
>>> osc(100, 50)

The first argument to the function osc is the number of mouse events to send, and the second argument is
the delay (in milliseconds) between events. Try playing around with different numbers.

Excercise: make the mouse go around in a circle.

Making a mouse with the accelerometer

Now lets make the mouse move based on the angle of the pyboard, using the accelerometer. The following
code can be typed directly at the REPL prompt, or put in the main.py file. Here, we’ll put in in main.py
because to do that we will learn how to go into safe mode.

At the moment the pyboard is acting as a serial USB device and an HID (a mouse). So you cannot access
the filesystem to edit your main.py file.

96 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

You also can’t edit your boot.py to get out of HID-mode and back to normal mode with a USB drive...

To get around this we need to go into safe mode. This was described in the [safe mode tutorial](tut-reset),
but we repeat the instructions here:

1. Hold down the USR switch.

2. While still holding down USR, press and release the RST switch.

3. The LEDs will then cycle green to orange to green+orange and back again.

4. Keep holding down USR until only the orange LED is lit, and then let go of the USR switch.

5. The orange LED should flash quickly 4 times, and then turn off.

6. You are now in safe mode.

In safe mode, the boot.py and main.py files are not executed, and so the pyboard boots up with default
settings. This means you now have access to the filesystem (the USB drive should appear), and you can
edit main.py. (Leave boot.py as-is, because we still want to go back to HID-mode after we finish editting
main.py.)

In main.py put the following code:

import pyb

switch = pyb.Switch()
accel = pyb.Accel()

while not switch():
pyb.hid((0, accel.x(), accel.y(), 0))
pyb.delay(20)

Save your file, eject/unmount your pyboard drive, and reset it using the RST switch. It should now act as
a mouse, and the angle of the board will move the mouse around. Try it out, and see if you can make the
mouse stand still!

Press the USR switch to stop the mouse motion.

You’ll note that the y-axis is inverted. That’s easy to fix: just put a minus sign in front of the y-coordinate
in the pyb.hid() line above.

Restoring your pyboard to normal

If you leave your pyboard as-is, it’ll behave as a mouse everytime you plug it in. You probably want to change
it back to normal. To do this you need to first enter safe mode (see above), and then edit the boot.py file.
In the boot.py file, comment out (put a # in front of) the line with the CDC+HID setting, so it looks like:

#pyb.usb_mode(’CDC+HID’) # act as a serial device and a mouse

Save your file, eject/unmount the drive, and reset the pyboard. It is now back to normal operating mode.

9.3.9 The Timers

The pyboard has 14 timers which each consist of an independent counter running at a user-defined frequency.
They can be set up to run a function at specific intervals. The 14 timers are numbered 1 through 14, but 3
is reserved for internal use, and 5 and 6 are used for servo and ADC/DAC control. Avoid using these timers
if possible.

Let’s create a timer object:

9.3. Micro Python tutorial 97

Micro Python Documentation, Выпуск 1.3.7

>>> tim = pyb.Timer(4)

Now let’s see what we just created:

>>> tim
Timer(4)

The pyboard is telling us that tim is attached to timer number 4, but it’s not yet initialised. So let’s initialise
it to trigger at 10 Hz (that’s 10 times per second):

>>> tim.init(freq=10)

Now that it’s initialised, we can see some information about the timer:

>>> tim
Timer(4, prescaler=255, period=32811, mode=0, div=0)

The information means that this timer is set to run at the peripheral clock speed divided by 255, and it
will count up to 32811, at which point it triggers an interrupt, and then starts counting again from 0. These
numbers are set to make the timer trigger at 10 Hz.

Timer counter

So what can we do with our timer? The most basic thing is to get the current value of its counter:

>>> tim.counter()
21504

This counter will continuously change, and counts up.

Timer callbacks

The next thing we can do is register a callback function for the timer to execute when it triggers (see the
[switch tutorial](tut-switch) for an introduction to callback functions):

>>> tim.callback(lambda t:pyb.LED(1).toggle())

This should start the red LED flashing right away. It will be flashing at 5 Hz (2 toggle’s are needed for 1
flash, so toggling at 10 Hz makes it flash at 5 Hz). You can change the frequency by re-initialising the timer:

>>> tim.init(freq=20)

You can disable the callback by passing it the value None:

>>> tim.callback(None)

The function that you pass to callback must take 1 argument, which is the timer object that triggered. This
allows you to control the timer from within the callback function.

We can create 2 timers and run them independently:

>>> tim4 = pyb.Timer(4, freq=10)
>>> tim7 = pyb.Timer(7, freq=20)
>>> tim4.callback(lambda t: pyb.LED(1).toggle())
>>> tim7.callback(lambda t: pyb.LED(2).toggle())

Because the callbacks are proper hardware interrupts, we can continue to use the pyboard for other things
while these timers are running.

98 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

Making a microsecond counter

You can use a timer to create a microsecond counter, which might be useful when you are doing something
which requires accurate timing. We will use timer 2 for this, since timer 2 has a 32-bit counter (so does timer
5, but if you use timer 5 then you can’t use the Servo driver at the same time).

We set up timer 2 as follows:

>>> micros = pyb.Timer(2, prescaler=83, period=0x3fffffff)

The prescaler is set at 83, which makes this timer count at 1 MHz. This is because the CPU clock, running at
168 MHz, is divided by 2 and then by prescaler+1, giving a freqency of 168 MHz/2/(83+1)=1 MHz for timer
2. The period is set to a large number so that the timer can count up to a large number before wrapping
back around to zero. In this case it will take about 17 minutes before it cycles back to zero.

To use this timer, it’s best to first reset it to 0:

>>> micros.counter(0)

and then perform your timing:

>>> start_micros = micros.counter()

... do some stuff ...

>>> end_micros = micros.counter()

9.3.10 Inline assembler

Here you will learn how to write inline assembler in Micro Python.

Note: this is an advanced tutorial, intended for those who already know a bit about microcontrollers and
assembly language.

Micro Python includes an inline assembler. It allows you to write assembly routines as a Python function,
and you can call them as you would a normal Python function.

Returning a value

Inline assembler functions are denoted by a special function decorator. Let’s start with the simplest example:

@micropython.asm_thumb
def fun():

movw(r0, 42)

You can enter this in a script or at the REPL. This function takes no arguments and returns the number 42.
r0 is a register, and the value in this register when the function returns is the value that is returned. Micro
Python always interprets the r0 as an integer, and converts it to an integer object for the caller.

If you run print(fun()) you will see it print out 42.

Accessing peripherals

For something a bit more complicated, let’s turn on an LED:

9.3. Micro Python tutorial 99

Micro Python Documentation, Выпуск 1.3.7

@micropython.asm_thumb
def led_on():

movwt(r0, stm.GPIOA)
movw(r1, 1 << 13)
strh(r1, [r0, stm.GPIO_BSRRL])

This code uses a few new concepts:

• stm is a module which provides a set of constants for easy access to the registers of the pyboard’s
microcontroller. Try running import stm and then help(stm) at the REPL. It will give you a list of
all the available constants.

• stm.GPIOA is the address in memory of the GPIOA peripheral. On the pyboard, the red LED is on
port A, pin PA13.

• movwt moves a 32-bit number into a register. It is a convenience function that turns into 2 thumb
instructions: movw followed by movt. The movt also shifts the immediate value right by 16 bits.

• strh stores a half-word (16 bits). The instruction above stores the lower 16-bits of r1 into the memory
location r0 + stm.GPIO_BSRRL. This has the effect of setting high all those pins on port A for which
the corresponding bit in r0 is set. In our example above, the 13th bit in r0 is set, so PA13 is pulled
high. This turns on the red LED.

Accepting arguments

Inline assembler functions can accept up to 3 arguments. If they are used, they must be named r0, r1 and
r2 to reflect the registers and the calling conventions.

Here is a function that adds its arguments:

@micropython.asm_thumb
def asm_add(r0, r1):

add(r0, r0, r1)

This performs the computation r0 = r0 + r1. Since the result is put in r0, that is what is returned. Try
asm_add(1, 2), it should return 3.

Loops

We can assign labels with label(my_label), and branch to them using b(my_label), or a conditional branch
like bgt(my_label).

The following example flashes the green LED. It flashes it r0 times.

@micropython.asm_thumb
def flash_led(r0):

get the GPIOA address in r1
movwt(r1, stm.GPIOA)

get the bit mask for PA14 (the pin LED #2 is on)
movw(r2, 1 << 14)

b(loop_entry)

label(loop1)

turn LED on
strh(r2, [r1, stm.GPIO_BSRRL])

100 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

delay for a bit
movwt(r4, 5599900)
label(delay_on)
sub(r4, r4, 1)
cmp(r4, 0)
bgt(delay_on)

turn LED off
strh(r2, [r1, stm.GPIO_BSRRH])

delay for a bit
movwt(r4, 5599900)
label(delay_off)
sub(r4, r4, 1)
cmp(r4, 0)
bgt(delay_off)

loop r0 times
sub(r0, r0, 1)
label(loop_entry)
cmp(r0, 0)
bgt(loop1)

9.3.11 Power control

pyb.wfi() is used to reduce power consumption while waiting for an event such as an interrupt. You would
use it in the following situation:

while True:
do_some_processing()
pyb.wfi()

Control the frequency using pyb.freq():

pyb.freq(30000000) # set CPU frequency to 30MHz

9.3.12 Tutorials requiring extra components

Controlling hobby servo motors

There are 4 dedicated connection points on the pyboard for connecting up hobby servo motors (see
eg [Wikipedia](http://en.wikipedia.org/wiki/Servo_%28radio_control%29)). These motors have 3 wires:
ground, power and signal. On the pyboard you can connect them in the bottom right corner, with the
signal pin on the far right. Pins X1, X2, X3 and X4 are the 4 dedicated servo signal pins.

9.3. Micro Python tutorial 101

http://en.wikipedia.org/wiki/Servo_%28radio_control%29

Micro Python Documentation, Выпуск 1.3.7

In this picture there are male-male double adaptors to connect the servos to the header pins on the pyboard.

The ground wire on a servo is usually the darkest coloured one, either black or dark brown. The power wire
will most likely be red.

The power pin for the servos (labelled VIN) is connected directly to the input power source of the pyboard.
When powered via USB, VIN is powered through a diode by the 5V USB power line. Connect to USB, the
pyboard can power at least 4 small to medium sized servo motors.

102 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

If using a battery to power the pyboard and run servo motors, make sure it is not greater than 6V, since
this is the maximum voltage most servo motors can take. (Some motors take only up to 4.8V, so check what
type you are using.)

Creating a Servo object

Plug in a servo to position 1 (the one with pin X1) and create a servo object using:

>>> servo1 = pyb.Servo(1)

To change the angle of the servo use the angle method:

>>> servo1.angle(45)
>>> servo1.angle(-60)

The angle here is measured in degrees, and ranges from about -90 to +90, depending on the motor. Calling
angle without parameters will return the current angle:

>>> servo1.angle()
-60

Note that for some angles, the returned angle is not exactly the same as the angle you set, due to rounding
errors in setting the pulse width.

You can pass a second parameter to the angle method, which specifies how long to take (in milliseconds) to
reach the desired angle. For example, to take 1 second (1000 milliseconds) to go from the current position
to 50 degrees, use

>>> servo1.angle(50, 1000)

This command will return straight away and the servo will continue to move to the desired angle, and stop
when it gets there. You can use this feature as a speed control, or to synchronise 2 or more servo motors. If
we have another servo motor (servo2 = pyb.Servo(2)) then we can do

>>> servo1.angle(-45, 2000); servo2.angle(60, 2000)

This will move the servos together, making them both take 2 seconds to reach their final angles.

Note: the semicolon between the 2 expressions above is used so that they are executed one after the other
when you press enter at the REPL prompt. In a script you don’t need to do this, you can just write them
one line after the other.

Continuous rotation servos

So far we have been using standard servos that move to a specific angle and stay at that angle. These
servo motors are useful to create joints of a robot, or things like pan-tilt mechanisms. Internally, the motor
has a variable resistor (potentiometer) which measures the current angle and applies power to the motor
proportional to how far it is from the desired angle. The desired angle is set by the width of a high-pulse on
the servo signal wire. A pulse width of 1500 microsecond corresponds to the centre position (0 degrees). The
pulses are sent at 50 Hz, ie 50 pulses per second.

You can also get continuous rotation servo motors which turn continuously clockwise or counterclockwise.
The direction and speed of rotation is set by the pulse width on the signal wire. A pulse width of 1500
microseconds corresponds to a stopped motor. A pulse width smaller or larger than this means rotate one
way or the other, at a given speed.

9.3. Micro Python tutorial 103

Micro Python Documentation, Выпуск 1.3.7

On the pyboard, the servo object for a continuous rotation motor is the same as before. In fact, using angle
you can set the speed. But to make it easier to understand what is intended, there is another method called
speed which sets the speed:

>>> servo1.speed(30)

speed has the same functionality as angle: you can get the speed, set it, and set it with a time to reach the
final speed.

>>> servo1.speed()
30
>>> servo1.speed(-20)
>>> servo1.speed(0, 2000)

The final command above will set the motor to stop, but take 2 seconds to do it. This is essentially a control
over the acceleration of the continuous servo.

A servo speed of 100 (or -100) is considered maximum speed, but actually you can go a bit faster than that,
depending on the particular motor.

The only difference between the angle and speed methods (apart from the name) is the way the input
numbers (angle or speed) are converted to a pulse width.

Calibration

The conversion from angle or speed to pulse width is done by the servo object using its calibration values.
To get the current calibration, use

>>> servo1.calibration()
(640, 2420, 1500, 2470, 2200)

There are 5 numbers here, which have meaning:

1. Minimum pulse width; the smallest pulse width that the servo accepts.

2. Maximum pulse width; the largest pulse width that the servo accepts.

3. Centre pulse width; the pulse width that puts the servo at 0 degrees or 0 speed.

4. The pulse width corresponding to 90 degrees. This sets the conversion in the method angle of angle
to pulse width.

5. The pulse width corresponding to a speed of 100. This sets the conversion in the method speed of
speed to pulse width.

You can recalibrate the servo (change its default values) by using:

>>> servo1.calibration(700, 2400, 1510, 2500, 2000)

Of course, you would change the above values to suit your particular servo motor.

Fading LEDs

In addition to turning LEDs on and off, it is also possible to control the brightness of an LED using Pulse-
Width Modulation (PWM), a common technique for obtaining variable output from a digital pin. This allows
us to fade an LED:

104 Глава 9. Micro Python documentation contents

http://en.wikipedia.org/wiki/Pulse-width_modulation
http://en.wikipedia.org/wiki/Pulse-width_modulation

Micro Python Documentation, Выпуск 1.3.7

Components

You will need:

• Standard 5 or 3 mm LED

• 100 Ohm resistor

• Wires

• Breadboard (optional, but makes things easier)

Connecting Things Up

For this tutorial, we will use the X1 pin. Connect one end of the resistor to X1, and the other end to the
anode of the LED, which is the longer leg. Connect the cathode of the LED to ground.

Code

By examining the Quick reference for the pyboard , we see that X1 is connected to channel 1 of timer 5 (TIM5
CH1). Therefore we will first create a Timer object for timer 5, then create a TimerChannel object for channel
1:

from pyb import Timer
from time import sleep

timer 5 will be created with a frequency of 100 Hz
tim = pyb.Timer(5, freq=100)
tchannel = tim.channel(1, Timer.PWM, pin=pyb.Pin.board.X1, pulse_width=0)

9.3. Micro Python tutorial 105

http://en.wikipedia.org/wiki/Breadboard

Micro Python Documentation, Выпуск 1.3.7

Brightness of the LED in PWM is controlled by controlling the pulse-width, that is the amount of time the
LED is on every cycle. With a timer frequency of 100 Hz, each cycle takes 0.01 second, or 10 ms.

To achieve the fading effect shown at the beginning of this tutorial, we want to set the pulse-width to a
small value, then slowly increase the pulse-width to brighten the LED, and start over when we reach some
maximum brightness:

maximum and minimum pulse-width, which corresponds to maximum
and minimum brightness
max_width = 200000
min_width = 20000

how much to change the pulse-width by each step
wstep = 1500
cur_width = min_width

while True:
tchannel.pulse_width(cur_width)

this determines how often we change the pulse-width. It is
analogous to frames-per-second
sleep(0.01)

cur_width += wstep

if cur_width > max_width:
cur_width = min_width

Breathing Effect

If we want to have a breathing effect, where the LED fades from dim to bright then bright to dim, then
we simply need to reverse the sign of wstep when we reach maximum brightness, and reverse it again at
minimum brightness. To do this we modify the while loop to be:

while True:
tchannel.pulse_width(cur_width)

sleep(0.01)

cur_width += wstep

if cur_width > max_width:
cur_width = max_width
wstep *= -1

elif cur_width < min_width:
cur_width = min_width
wstep *= -1

Advanced Exercise

You may have noticed that the LED brightness seems to fade slowly, but increases quickly. This is because
our eyes interprets brightness logarithmically (Weber’s Law), while the LED’s brightness changes linearly,
that is by the same amount each time. How do you solve this problem? (Hint: what is the opposite of the
logarithmic function?)

106 Глава 9. Micro Python documentation contents

http://www.telescope-optics.net/eye_intensity_response.htm

Micro Python Documentation, Выпуск 1.3.7

Addendum

We could have also used the digital-to-analog converter (DAC) to achieve the same effect. The PWM method
has the advantage that it drives the LED with the same current each time, but for different lengths of time.
This allows better control over the brightness, because LEDs do not necessarily exhibit a linear relationship
between the driving current and brightness.

The LCD and touch-sensor skin

Soldering and using the LCD and touch-sensor skin.

9.3. Micro Python tutorial 107

Micro Python Documentation, Выпуск 1.3.7

108 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

The following video shows how to solder the headers onto the LCD skin. At the end of the video, it shows
you how to correctly connect the LCD skin to the pyboard.

Using the LCD

To get started using the LCD, try the following at the Micro Python prompt. Make sure the LCD skin is
attached to the pyboard as pictured at the top of this page.

>>> import pyb
>>> lcd = pyb.LCD(’X’)
>>> lcd.light(True)
>>> lcd.write(’Hello uPy!\n’)

You can make a simple animation using the code:

import pyb
lcd = pyb.LCD(’X’)
lcd.light(True)
for x in range(-80, 128):

lcd.fill(0)
lcd.text(’Hello uPy!’, x, 10, 1)
lcd.show()
pyb.delay(25)

Using the touch sensor

To read the touch-sensor data you need to use the I2C bus. The MPR121 capacitive touch sensor has address
90.

9.3. Micro Python tutorial 109

Micro Python Documentation, Выпуск 1.3.7

To get started, try:

>>> import pyb
>>> i2c = pyb.I2C(1, pyb.I2C.MASTER)
>>> i2c.mem_write(4, 90, 0x5e)
>>> touch = i2c.mem_read(1, 90, 0)[0]

The first line above makes an I2C object, and the second line enables the 4 touch sensors. The third line
reads the touch status and the touch variable holds the state of the 4 touch buttons (A, B, X, Y).

There is a simple driver here which allows you to set the threshold and debounce parameters, and easily
read the touch status and electrode voltage levels. Copy this script to your pyboard (either flash or SD card,
in the top directory or lib/ directory) and then try:

>>> import pyb
>>> import mpr121
>>> m = mpr121.MPR121(pyb.I2C(1, pyb.I2C.MASTER))
>>> for i in range(100):
... print(m.touch_status())
... pyb.delay(100)
...

This will continuously print out the touch status of all electrodes. Try touching each one in turn.

Note that if you put the LCD skin in the Y-position, then you need to initialise the I2C bus using:

>>> m = mpr121.MPR121(pyb.I2C(2, pyb.I2C.MASTER))

There is also a demo which uses the LCD and the touch sensors together, and can be found here.

The AMP audio skin

Soldering and using the AMP audio skin.

110 Глава 9. Micro Python documentation contents

http://micropython.org/resources/examples/mpr121.py
http://micropython.org/resources/examples/lcddemo.py

Micro Python Documentation, Выпуск 1.3.7

The following video shows how to solder the headers, microphone and speaker onto the AMP skin.

Example code

The AMP skin has a speaker which is connected to DAC(1) via a small power amplifier. The volume of the
amplifier is controlled by a digital potentiometer, which is an I2C device with address 46 on the IC2(1) bus.

To set the volume, define the following function:

import pyb
def volume(val):

pyb.I2C(1, pyb.I2C.MASTER).mem_write(val, 46, 0)

Then you can do:

>>> volume(0) # minimum volume
>>> volume(127) # maximum volume

To play a sound, use the write_timed method of the DAC object. For example:

import math
from pyb import DAC

create a buffer containing a sine-wave
buf = bytearray(100)
for i in range(len(buf)):

buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf)))

output the sine-wave at 400Hz
dac = DAC(1)
dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR)

9.3. Micro Python tutorial 111

Micro Python Documentation, Выпуск 1.3.7

You can also play WAV files using the Python wave module. You can get the wave module here and you will
also need the chunk module available here. Put these on your pyboard (either on the flash or the SD card in
the top-level directory). You will need an 8-bit WAV file to play, such as this one. Then you can do:

>>> import wave
>>> from pyb import DAC
>>> dac = DAC(1)
>>> f = wave.open(’test.wav’)
>>> dac.write_timed(f.readframes(f.getnframes()), f.getframerate())

This should play the WAV file.

9.3.13 Tips, tricks and useful things to know

Debouncing a pin input

A pin used as input from a switch or other mechanical device can have a lot of noise on it, rapidly changing
from low to high when the switch is first pressed or released. This noise can be eliminated using a capacitor
(a debouncing circuit). It can also be eliminated using a simple function that makes sure the value on the
pin is stable.

The following function does just this. It gets the current value of the given pin, and then waits for the value
to change. The new pin value must be stable for a continuous 20ms for it to register the change. You can
adjust this time (to say 50ms) if you still have noise.

import pyb

def wait_pin_change(pin):
wait for pin to change value
it needs to be stable for a continuous 20ms
cur_value = pin.value()
active = 0
while active < 20:

if pin.value() != cur_value:
active += 1

else:
active = 0

pyb.delay(1)

Use it something like this:

import pyb

pin_x1 = pyb.Pin(’X1’, pyb.Pin.IN, pyb.Pin.PULL_DOWN)
while True:

wait_pin_change(pin_x1)
pyb.LED(4).toggle()

Making a UART - USB pass through

It’s as simple as:

import pyb
import select

def pass_through(usb, uart):

112 Глава 9. Micro Python documentation contents

http://micropython.org/resources/examples/wave.py
http://micropython.org/resources/examples/chunk.py
http://micropython.org/resources/examples/test.wav

Micro Python Documentation, Выпуск 1.3.7

while True:
select.select([usb, uart], [], [])
if usb.any():

uart.write(usb.read(256))
if uart.any():

usb.write(uart.read(256))

pass_through(pyb.USB_VCP(), pyb.UART(1, 9600))

9.4 Micro Python libraries

9.4.1 Python standard libraries

The following standard Python libraries are built in to Micro Python.

For additional libraries, please download them from the micropython-lib repository.

cmath – mathematical functions for complex numbers

The cmath module provides some basic mathematical funtions for working with complex numbers.

Functions

cmath.cos(z)
Return the cosine of z.

cmath.exp(z)
Return the exponential of z.

cmath.log(z)
Return the natural logarithm of z. The branch cut is along the negative real axis.

cmath.log10(z)
Return the base-10 logarithm of z. The branch cut is along the negative real axis.

cmath.phase(z)
Returns the phase of the number z, in the range (-pi, +pi].

cmath.polar(z)
Returns, as a tuple, the polar form of z.

cmath.rect(r, phi)
Returns the complex number with modulus r and phase phi.

cmath.sin(z)
Return the sine of z.

cmath.sqrt(z)
Return the square-root of z.

Constants

cmath.e
base of the natural logarithm

9.4. Micro Python libraries 113

https://github.com/micropython/micropython-lib

Micro Python Documentation, Выпуск 1.3.7

cmath.pi
the ratio of a circle’s circumference to its diameter

gc – control the garbage collector

Functions

gc.enable()
Enable automatic garbage collection.

gc.disable()
Disable automatic garbage collection. Heap memory can still be allocated, and garbage collection can
still be initiated manually using gc.collect().

gc.collect()
Run a garbage collection.

gc.mem_alloc()
Return the number of bytes of heap RAM that are allocated.

gc.mem_free()
Return the number of bytes of available heap RAM.

math – mathematical functions

The math module provides some basic mathematical funtions for working with floating-point numbers.

Note: On the pyboard, floating-point numbers have 32-bit precision.

Functions

math.acos(x)
Return the inverse cosine of x.

math.acosh(x)
Return the inverse hyperbolic cosine of x.

math.asin(x)
Return the inverse sine of x.

math.asinh(x)
Return the inverse hyperbolic sine of x.

math.atan(x)
Return the inverse tangent of x.

math.atan2(y, x)
Return the principal value of the inverse tangent of y/x.

math.atanh(x)
Return the inverse hyperbolic tangent of x.

math.ceil(x)
Return an integer, being x rounded towards positive infinity.

math.copysign(x, y)
Return x with the sign of y.

114 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

math.cos(x)
Return the cosine of x.

math.cosh(x)
Return the hyperbolic cosine of x.

math.degrees(x)
Return radians x converted to degrees.

math.erf(x)
Return the error function of x.

math.erfc(x)
Return the complementary error function of x.

math.exp(x)
Return the exponential of x.

math.expm1(x)
Return exp(x) - 1.

math.fabs(x)
Return the absolute value of x.

math.floor(x)
Return an integer, being x rounded towards negative infinity.

math.fmod(x, y)
Return the remainder of x/y.

math.frexp(x)
Converts a floating-point number to fractional and integral components.

math.gamma(x)
Return the gamma function of x.

math.isfinite(x)
Return True if x is finite.

math.isinf(x)
Return True if x is infinite.

math.isnan(x)
Return True if x is not-a-number

math.ldexp(x, exp)
Return x * (2**exp).

math.lgamma(x)
Return the natural logarithm of the gamma function of x.

math.log(x)
Return the natural logarithm of x.

math.log10(x)
Return the base-10 logarithm of x.

math.log2(x)
Return the base-2 logarithm of x.

math.modf(x)
Return a tuple of two floats, being the fractional and integral parts of x. Both return values have the
same sign as x.

9.4. Micro Python libraries 115

Micro Python Documentation, Выпуск 1.3.7

math.pow(x, y)
Returns x to the power of y.

math.radians(x)
Return degrees x converted to radians.

math.sin(x)
Return the sine of x.

math.sinh(x)
Return the hyperbolic sine of x.

math.sqrt(x)
Return the square root of x.

math.tan(x)
Return the tangent of x.

math.tanh(x)
Return the hyperbolic tangent of x.

math.trunc(x)
Return an integer, being x rounded towards 0.

Constants

math.e
base of the natural logarithm

math.pi
the ratio of a circle’s circumference to its diameter

os – basic “operating system” services

The os module contains functions for filesystem access and urandom.

Pyboard specifics

The filesystem on the pyboard has / as the root directory and the available physical drives are accessible
from here. They are currently:

/flash – the internal flash filesystem

/sd – the SD card (if it exists)

On boot up, the current directory is /flash if no SD card is inserted, otherwise it is /sd.

Functions

os.chdir(path)
Change current directory.

os.getcwd()
Get the current directory.

os.listdir([dir])
With no argument, list the current directory. Otherwise list the given directory.

116 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

os.mkdir(path)
Create a new directory.

os.remove(path)
Remove a file.

os.rmdir(path)
Remove a directory.

os.stat(path)
Get the status of a file or directory.

os.sync()
Sync all filesystems.

os.urandom(n)
Return a bytes object with n random bytes, generated by the hardware random number generator.

Constants

os.sep
separation character used in paths

select – wait for events on a set of streams

This module provides functions to wait for events on streams (select streams which are ready for operations).

Pyboard specifics

Polling is an efficient way of waiting for read/write activity on multiple objects. Current objects that support
polling are: pyb.UART, pyb.USB_VCP.

Functions

select.poll()
Create an instance of the Poll class.

select.select(rlist, wlist, xlist[, timeout])
Wait for activity on a set of objects.

This function is provided for compatibility and is not efficient. Usage of Poll is recommended instead.

class Poll

Methods
poll.register(obj [, eventmask])

Register obj for polling. eventmask is 1 for read, 2 for write, 3 for read-write.
poll.unregister(obj)

Unregister obj from polling.

poll.modify(obj, eventmask)
Modify the eventmask for obj.

9.4. Micro Python libraries 117

Micro Python Documentation, Выпуск 1.3.7

poll.poll([timeout])
Wait for at least one of the registered objects to become ready. Returns list of ready objects, or empty
list on timeout.

Timeout is in milliseconds.

struct – pack and unpack primitive data types

See Python struct for more information.

Functions

struct.calcsize(fmt)
Return the number of bytes needed to store the given fmt.

struct.pack(fmt, v1, v2, ...)
Pack the values v1, v2, ... according to the format string fmt. The return value is a bytes object
encoding the values.

struct.unpack(fmt, data)
Unpack from the data according to the format string fmt. The return value is a tuple of the unpacked
values.

sys – system specific functions

Functions

sys.exit([retval])
Raise a SystemExit exception. If an argument is given, it is the value given to SystemExit.

Constants

sys.argv
a mutable list of arguments this program started with

sys.byteorder
the byte order of the system (“little” or “big”)

sys.path
a mutable list of directories to search for imported modules

sys.platform
the platform that Micro Python is running on

sys.stderr
standard error (connected to USB VCP, and optional UART object)

sys.stdin
standard input (connected to USB VCP, and optional UART object)

sys.stdout
standard output (connected to USB VCP, and optional UART object)

sys.version
Python language version that this implementation conforms to, as a string

118 Глава 9. Micro Python documentation contents

https://docs.python.org/3/library/struct.html

Micro Python Documentation, Выпуск 1.3.7

sys.version_info
Python language version that this implementation conforms to, as a tuple of ints

time – time related functions

The time module provides functions for getting the current time and date, and for sleeping.

Functions

time.localtime([secs])
Convert a time expressed in seconds since Jan 1, 2000 into an 8-tuple which contains: (year, month,
mday, hour, minute, second, weekday, yearday) If secs is not provided or None, then the current time
from the RTC is used. year includes the century (for example 2014).

•month is 1-12

•mday is 1-31

•hour is 0-23

•minute is 0-59

•second is 0-59

•weekday is 0-6 for Mon-Sun

•yearday is 1-366

time.mktime()
This is inverse function of localtime. It’s argument is a full 8-tuple which expresses a time as per
localtime. It returns an integer which is the number of seconds since Jan 1, 2000.

time.sleep(seconds)
Sleep for the given number of seconds. Seconds can be a floating-point number to sleep for a fractional
number of seconds.

time.time()
Returns the number of seconds, as an integer, since 1/1/2000.

9.4.2 Python micro-libraries

The following standard Python libraries have been “micro-ified” to fit in with the philosophy of Micro Python.
They provide the core functionality of that module and are intended to be a drop-in replacement for the
standard Python library.

The modules are available by their u-name, and also by their non-u-name. The non-u-name can be overridden
by a file of that name in your package path. For example, import json will first search for a file json.py or
directory json and load that package if it is found. If nothing is found, it will fallback to loading the built-in
ujson module.

usocket – socket module

Socket functionality.

9.4. Micro Python libraries 119

Micro Python Documentation, Выпуск 1.3.7

Functions

usocket.getaddrinfo(host, port)

usocket.socket(family=AF_INET, type=SOCK_STREAM, fileno=-1)
Create a socket.

uheapq – heap queue algorithm

This module implements the heap queue algorithm.

A heap queue is simply a list that has its elements stored in a certain way.

Functions

uheapq.heappush(heap, item)
Push the item onto the heap.

uheapq.heappop(heap)
Pop the first item from the heap, and return it. Raises IndexError if heap is empty.

uheapq.heapify(x)
Convert the list x into a heap. This is an in-place operation.

ujson – JSON encoding and decoding

This modules allows to convert between Python objects and the JSON data format.

Functions

ujson.dumps(obj)
Return obj represented as a JSON string.

ujson.loads(str)
Parse the JSON str and return an object. Raises ValueError if the string is not correctly formed.

9.4.3 Libraries specific to the pyboard

The following libraries are specific to the pyboard.

pyb — functions related to the pyboard

The pyb module contains specific functions related to the pyboard.

Time related functions

pyb.delay(ms)
Delay for the given number of milliseconds.

pyb.udelay(us)
Delay for the given number of microseconds.

120 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

pyb.millis()
Returns the number of milliseconds since the board was last reset.

The result is always a micropython smallint (31-bit signed number), so after 2^30 milliseconds (about
12.4 days) this will start to return negative numbers.

pyb.micros()
Returns the number of microseconds since the board was last reset.

The result is always a micropython smallint (31-bit signed number), so after 2^30 microseconds (about
17.8 minutes) this will start to return negative numbers.

pyb.elapsed_millis(start)
Returns the number of milliseconds which have elapsed since start.

This function takes care of counter wrap, and always returns a positive number. This means it can be
used to measure periods upto about 12.4 days.

Example:

start = pyb.millis()
while pyb.elapsed_millis(start) < 1000:

Perform some operation

pyb.elapsed_micros(start)
Returns the number of microseconds which have elapsed since start.

This function takes care of counter wrap, and always returns a positive number. This means it can be
used to measure periods upto about 17.8 minutes.

Example:

start = pyb.micros()
while pyb.elapsed_micros(start) < 1000:

Perform some operation
pass

Reset related functions

pyb.hard_reset()
Resets the pyboard in a manner similar to pushing the external RESET button.

pyb.bootloader()
Activate the bootloader without BOOT* pins.

Interrupt related functions

pyb.disable_irq()
Disable interrupt requests. Returns the previous IRQ state: False/True for disabled/enabled IRQs
respectively. This return value can be passed to enable_irq to restore the IRQ to its original state.

pyb.enable_irq(state=True)
Enable interrupt requests. If state is True (the default value) then IRQs are enabled. If state is
False then IRQs are disabled. The most common use of this function is to pass it the value returned
by disable_irq to exit a critical section.

9.4. Micro Python libraries 121

Micro Python Documentation, Выпуск 1.3.7

Power related functions

pyb.freq([sys_freq])
If given no arguments, returns a tuple of clock frequencies: (SYSCLK, HCLK, PCLK1, PCLK2).

If given an argument, sets the system frequency to that value in Hz. Eg freq(120000000) gives 120MHz.
Note that not all values are supported and the largest supported frequency not greater than the given
sys_freq will be selected.

Supported frequencies are (in MHz): 8, 16, 24, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 72, 84, 96, 108,
120, 144, 168.

8MHz uses the HSE (external crystal) directly and 16MHz uses the HSI (internal oscillator) directly.
The higher frequencies use the HSE to drive the PLL (phase locked loop), and then use the output of
the PLL.

Note that if you change the frequency while the USB is enabled then the USB may become unreliable.
It is best to change the frequency in boot.py, before the USB peripheral is started. Also note that
frequencies below 36MHz do not allow the USB to function correctly.

pyb.wfi()
Wait for an interrupt. This executies a wfi instruction which reduces power consumption of the MCU
until an interrupt occurs, at which point execution continues.

pyb.standby()

pyb.stop()

Miscellaneous functions

pyb.have_cdc()
Return True if USB is connected as a serial device, False otherwise.

pyb.hid((buttons, x, y, z))
Takes a 4-tuple (or list) and sends it to the USB host (the PC) to signal a HID mouse-motion event.

pyb.info([dump_alloc_table])
Print out lots of information about the board.

pyb.repl_uart(uart)
Get or set the UART object that the REPL is repeated on.

pyb.rng()
Return a 30-bit hardware generated random number.

pyb.sync()
Sync all file systems.

pyb.unique_id()
Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.

Classes

class Accel – accelerometer control Accel is an object that controls the accelerometer. Example usage:

accel = pyb.Accel()
for i in range(10):

print(accel.x(), accel.y(), accel.z())

122 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

Raw values are between -32 and 31.

Constructors
class pyb.Accel

Create and return an accelerometer object.

Note: if you read accelerometer values immediately after creating this object you will get 0. It takes
around 20ms for the first sample to be ready, so, unless you have some other code between creating
this object and reading its values, you should put a pyb.delay(20) after creating it. For example:

accel = pyb.Accel()
pyb.delay(20)
print(accel.x())

Methods
accel.filtered_xyz()

Get a 3-tuple of filtered x, y and z values.
accel.tilt()

Get the tilt register.

accel.x()
Get the x-axis value.

accel.y()
Get the y-axis value.

accel.z()
Get the z-axis value.

class ADC – analog to digital conversion: read analog values on a pin Usage:

import pyb

adc = pyb.ADC(pin) # create an analog object from a pin
val = adc.read() # read an analog value

adc = pyb.ADCAll(resolution) # creale an ADCAll object
val = adc.read_channel(channel) # read the given channel
val = adc.read_core_temp() # read MCU temperature
val = adc.read_core_vbat() # read MCU VBAT
val = adc.read_core_vref() # read MCU VREF

Constructors
class pyb.ADC(pin)

Create an ADC object associated with the given pin. This allows you to then read analog values on
that pin.

Methods
adc.read()

Read the value on the analog pin and return it. The returned value will be between 0 and 4095.
adc.read_timed(buf, freq)

Read analog values into the given buffer at the given frequency. Buffer can be bytearray or array.array
for example. If a buffer with 8-bit elements is used, sample resolution will be reduced to 8 bits.

9.4. Micro Python libraries 123

Micro Python Documentation, Выпуск 1.3.7

Example:

adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
buf = bytearray(100) # create a buffer of 100 bytes
adc.read_timed(buf, 10) # read analog values into buf at 10Hz

this will take 10 seconds to finish
for val in buf: # loop over all values

print(val) # print the value out

This function does not allocate any memory.

class CAN – controller area network communication bus CAN implements the standard CAN
communications protocol. At the physical level it consists of 2 lines: RX and TX. Note that to connect the
pyboard to a CAN bus you must use a CAN transceiver to convert the CAN logic signals from the pyboard
to the correct voltage levels on the bus.

Note that this driver does not yet support filter configuration (it defaults to a single filter that lets through
all messages), or bus timing configuration (except for setting the prescaler).

Example usage (works without anything connected):

from pyb import CAN
can = pyb.CAN(1, pyb.CAN.LOOPBACK)
can.send(’message!’, 123) # send message to id 123
can.recv(0) # receive message on FIFO 0

Constructors
class pyb.CAN(bus, ...)

Construct a CAN object on the given bus. bus can be 1-2, or ‘YA’ or ‘YB’. With no additional
parameters, the CAN object is created but not initialised (it has the settings from the last initialisation
of the bus, if any). If extra arguments are given, the bus is initialised. See init for parameters of
initialisation.

The physical pins of the CAN busses are:

•CAN(1) is on YA: (RX, TX) = (Y3, Y4) = (PB8, PB9)

•CAN(2) is on YB: (RX, TX) = (Y5, Y6) = (PB12, PB13)

Methods
can.init(mode, extframe=False, prescaler=100, *, sjw=1, bs1=6, bs2=8)

Initialise the CAN bus with the given parameters:

•mode is one of: NORMAL, LOOPBACK, SILENT, SILENT_LOOPBACK

•if extframe is True then the bus uses extended identifiers in the frames (29 bits); otherwise it
uses standard 11 bit identifiers

•prescaler is used to set the duration of 1 time quanta; the time quanta will be the input clock
(PCLK1, see pyb.freq()) divided by the prescaler

•sjw is the resynchronisation jump width in units of the time quanta; it can be 1, 2, 3, 4

•bs1 defines the location of the sample point in units of the time quanta; it can be between 1 and
1024 inclusive

•bs2 defines the location of the transmit point in units of the time quanta; it can be between 1
and 16 inclusive

124 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

The time quanta tq is the basic unit of time for the CAN bus. tq is the CAN prescaler value divided
by PCLK1 (the frequency of internal peripheral bus 1); see pyb.freq() to determine PCLK1.

A single bit is made up of the synchronisation segment, which is always 1 tq. Then follows bit segment
1, then bit segment 2. The sample point is after bit segment 1 finishes. The transmit point is after bit
segment 2 finishes. The baud rate will be 1/bittime, where the bittime is 1 + BS1 + BS2 multiplied
by the time quanta tq.

For example, with PCLK1=42MHz, prescaler=100, sjw=1, bs1=6, bs2=8, the value of tq is 2.38
microseconds. The bittime is 35.7 microseconds, and the baudrate is 28kHz.

See page 680 of the STM32F405 datasheet for more details.
can.deinit()

Turn off the CAN bus.

can.any(fifo)
Return True if any message waiting on the FIFO, else False.

can.recv(fifo, *, timeout=5000)
Receive data on the bus:

•fifo is an integer, which is the FIFO to receive on

•timeout is the timeout in milliseconds to wait for the receive.

Return value: buffer of data bytes.

can.send(send, addr, *, timeout=5000)
Send a message on the bus:

•send is the data to send (an integer to send, or a buffer object).

•addr is the address to send to

•timeout is the timeout in milliseconds to wait for the send.

Return value: None.

Constants
CAN.NORMAL
CAN.LOOPBACK

CAN.SILENT

CAN.SILENT_LOOPBACK
the mode of the CAN bus

class DAC – digital to analog conversion The DAC is used to output analog values (a specific voltage)
on pin X5 or pin X6. The voltage will be between 0 and 3.3V.

This module will undergo changes to the API.

Example usage:

from pyb import DAC

dac = DAC(1) # create DAC 1 on pin X5
dac.write(128) # write a value to the DAC (makes X5 1.65V)

To output a continuous sine-wave:

9.4. Micro Python libraries 125

Micro Python Documentation, Выпуск 1.3.7

import math
from pyb import DAC

create a buffer containing a sine-wave
buf = bytearray(100)
for i in range(len(buf)):

buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf)))

output the sine-wave at 400Hz
dac = DAC(1)
dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR)

Constructors
class pyb.DAC(port)

Construct a new DAC object.

port can be a pin object, or an integer (1 or 2). DAC(1) is on pin X5 and DAC(2) is on pin X6.

Methods
dac.noise(freq)

Generate a pseudo-random noise signal. A new random sample is written to the DAC output at the
given frequency.

dac.triangle(freq)
Generate a triangle wave. The value on the DAC output changes at the given frequency, and the
frequence of the repeating triangle wave itself is 256 (or 1024, need to check) times smaller.

dac.write(value)
Direct access to the DAC output (8 bit only at the moment).

dac.write_timed(data, freq, *, mode=DAC.NORMAL)
Initiates a burst of RAM to DAC using a DMA transfer. The input data is treated as an array of bytes
(8 bit data).

mode can be DAC.NORMAL or DAC.CIRCULAR.

TIM6 is used to control the frequency of the transfer.

class ExtInt – configure I/O pins to interrupt on external events There are a total of 22 interrupt
lines. 16 of these can come from GPIO pins and the remaining 6 are from internal sources.

For lines 0 thru 15, a given line can map to the corresponding line from an arbitrary port. So line 0 can map
to Px0 where x is A, B, C, ... and line 1 can map to Px1 where x is A, B, C, ...

def callback(line):
print("line =", line)

Note: ExtInt will automatically configure the gpio line as an input.

extint = pyb.ExtInt(pin, pyb.ExtInt.IRQ_FALLING, pyb.Pin.PULL_UP, callback)

Now every time a falling edge is seen on the X1 pin, the callback will be called. Caution: mechanical
pushbuttons have “bounce” and pushing or releasing a switch will often generate multiple edges. See:
http://www.eng.utah.edu/~cs5780/debouncing.pdf for a detailed explanation, along with various techniques
for debouncing.

Trying to register 2 callbacks onto the same pin will throw an exception.

126 Глава 9. Micro Python documentation contents

http://www.eng.utah.edu/~cs5780/debouncing.pdf

Micro Python Documentation, Выпуск 1.3.7

If pin is passed as an integer, then it is assumed to map to one of the internal interrupt sources, and must
be in the range 16 thru 22.

All other pin objects go through the pin mapper to come up with one of the gpio pins.

extint = pyb.ExtInt(pin, mode, pull, callback)

Valid modes are pyb.ExtInt.IRQ_RISING, pyb.ExtInt.IRQ_FALLING,
pyb.ExtInt.IRQ_RISING_FALLING, pyb.ExtInt.EVT_RISING, pyb.ExtInt.EVT_FALLING, and
pyb.ExtInt.EVT_RISING_FALLING.

Only the IRQ_xxx modes have been tested. The EVT_xxx modes have something to do with sleep mode
and the WFE instruction.

Valid pull values are pyb.Pin.PULL_UP, pyb.Pin.PULL_DOWN, pyb.Pin.PULL_NONE.

There is also a C API, so that drivers which require EXTI interrupt lines can also use this code. See extint.h
for the available functions and usrsw.h for an example of using this.

Constructors
class pyb.ExtInt(pin, mode, pull, callback)

Create an ExtInt object:

•pin is the pin on which to enable the interrupt (can be a pin object or any valid pin name).

•mode can be one of: - ExtInt.IRQ_RISING - trigger on a rising edge; - ExtInt.IRQ_FALLING -
trigger on a falling edge; - ExtInt.IRQ_RISING_FALLING - trigger on a rising or falling edge.

•pull can be one of: - pyb.Pin.PULL_NONE - no pull up or down resistors; - pyb.Pin.PULL_UP -
enable the pull-up resistor; - pyb.Pin.PULL_DOWN - enable the pull-down resistor.

•callback is the function to call when the interrupt triggers. The callback function must accept
exactly 1 argument, which is the line that triggered the interrupt.

Class methods
ExtInt.regs()

Dump the values of the EXTI registers.

Methods
extint.disable()

Disable the interrupt associated with the ExtInt object. This could be useful for debouncing.
extint.enable()

Enable a disabled interrupt.

extint.line()
Return the line number that the pin is mapped to.

extint.swint()
Trigger the callback from software.

Constants
ExtInt.IRQ_FALLING

interrupt on a falling edge
ExtInt.IRQ_RISING

interrupt on a rising edge

9.4. Micro Python libraries 127

Micro Python Documentation, Выпуск 1.3.7

ExtInt.IRQ_RISING_FALLING
interrupt on a rising or falling edge

class I2C – a two-wire serial protocol I2C is a two-wire protocol for communicating between devices.
At the physical level it consists of 2 wires: SCL and SDA, the clock and data lines respectively.

I2C objects are created attached to a specific bus. They can be initialised when created, or initialised later
on:

from pyb import I2C

i2c = I2C(1) # create on bus 1
i2c = I2C(1, I2C.MASTER) # create and init as a master
i2c.init(I2C.MASTER, baudrate=20000) # init as a master
i2c.init(I2C.SLAVE, addr=0x42) # init as a slave with given address
i2c.deinit() # turn off the peripheral

Printing the i2c object gives you information about its configuration.

Basic methods for slave are send and recv:

i2c.send(’abc’) # send 3 bytes
i2c.send(0x42) # send a single byte, given by the number
data = i2c.recv(3) # receive 3 bytes

To receive inplace, first create a bytearray:

data = bytearray(3) # create a buffer
i2c.recv(data) # receive 3 bytes, writing them into data

You can specify a timeout (in ms):

i2c.send(b’123’, timeout=2000) # timout after 2 seconds

A master must specify the recipient’s address:

i2c.init(I2C.MASTER)
i2c.send(’123’, 0x42) # send 3 bytes to slave with address 0x42
i2c.send(b’456’, addr=0x42) # keyword for address

Master also has other methods:

i2c.is_ready(0x42) # check if slave 0x42 is ready
i2c.scan() # scan for slaves on the bus, returning

a list of valid addresses
i2c.mem_read(3, 0x42, 2) # read 3 bytes from memory of slave 0x42,

starting at address 2 in the slave
i2c.mem_write(’abc’, 0x42, 2, timeout=1000)

Constructors
class pyb.I2C(bus, ...)

Construct an I2C object on the given bus. bus can be 1 or 2. With no additional parameters, the I2C
object is created but not initialised (it has the settings from the last initialisation of the bus, if any).
If extra arguments are given, the bus is initialised. See init for parameters of initialisation.

The physical pins of the I2C busses are:

•I2C(1) is on the X position: (SCL, SDA) = (X9, X10) = (PB6, PB7)

128 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

•I2C(2) is on the Y position: (SCL, SDA) = (Y9, Y10) = (PB10, PB11)

Methods
i2c.deinit()

Turn off the I2C bus.
i2c.init(mode, *, addr=0x12, baudrate=400000, gencall=False)

Initialise the I2C bus with the given parameters:

•mode must be either I2C.MASTER or I2C.SLAVE

•addr is the 7-bit address (only sensible for a slave)

•baudrate is the SCL clock rate (only sensible for a master)

•gencall is whether to support general call mode

i2c.is_ready(addr)
Check if an I2C device responds to the given address. Only valid when in master mode.

i2c.mem_read(data, addr, memaddr, timeout=5000, addr_size=8)
Read from the memory of an I2C device:

•data can be an integer (number of bytes to read) or a buffer to read into

•addr is the I2C device address

•memaddr is the memory location within the I2C device

•timeout is the timeout in milliseconds to wait for the read

•addr_size selects width of memaddr: 8 or 16 bits

Returns the read data. This is only valid in master mode.

i2c.mem_write(data, addr, memaddr, timeout=5000, addr_size=8)
Write to the memory of an I2C device:

•data can be an integer or a buffer to write from

•addr is the I2C device address

•memaddr is the memory location within the I2C device

•timeout is the timeout in milliseconds to wait for the write

•addr_size selects width of memaddr: 8 or 16 bits

Returns None. This is only valid in master mode.

i2c.recv(recv, addr=0x00, timeout=5000)
Receive data on the bus:

•recv can be an integer, which is the number of bytes to receive, or a mutable buffer, which will
be filled with received bytes

•addr is the address to receive from (only required in master mode)

•timeout is the timeout in milliseconds to wait for the receive

Return value: if recv is an integer then a new buffer of the bytes received, otherwise the same buffer
that was passed in to recv.

i2c.scan()
Scan all I2C addresses from 0x01 to 0x7f and return a list of those that respond. Only valid when in
master mode.

9.4. Micro Python libraries 129

Micro Python Documentation, Выпуск 1.3.7

i2c.send(send, addr=0x00, timeout=5000)
Send data on the bus:

•send is the data to send (an integer to send, or a buffer object)

•addr is the address to send to (only required in master mode)

•timeout is the timeout in milliseconds to wait for the send

Return value: None.

Constants
I2C.MASTER

for initialising the bus to master mode
I2C.SLAVE

for initialising the bus to slave mode

class LCD – LCD control for the LCD touch-sensor pyskin The LCD class is used to control the
LCD on the LCD touch-sensor pyskin, LCD32MKv1.0. The LCD is a 128x32 pixel monochrome screen, part
NHD-C12832A1Z.

The pyskin must be connected in either the X or Y positions, and then an LCD object is made using:

lcd = pyb.LCD(’X’) # if pyskin is in the X position
lcd = pyb.LCD(’Y’) # if pyskin is in the Y position

Then you can use:

lcd.light(True) # turn the backlight on
lcd.write(’Hello world!\n’) # print text to the screen

This driver implements a double buffer for setting/getting pixels. For example, to make a bouncing dot, try:

x = y = 0
dx = dy = 1
while True:

update the dot’s position
x += dx
y += dy

make the dot bounce of the edges of the screen
if x <= 0 or x >= 127: dx = -dx
if y <= 0 or y >= 31: dy = -dy

lcd.fill(0) # clear the buffer
lcd.pixel(x, y, 1) # draw the dot
lcd.show() # show the buffer
pyb.delay(50) # pause for 50ms

Constructors
class pyb.LCD(skin_position)

Construct an LCD object in the given skin position. skin_position can be ‘X’ or ‘Y’, and should
match the position where the LCD pyskin is plugged in.

130 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

Methods
lcd.command(instr_data, buf)

Send an arbitrary command to the LCD. Pass 0 for instr_data to send an instruction, otherwise pass
1 to send data. buf is a buffer with the instructions/data to send.

lcd.contrast(value)
Set the contrast of the LCD. Valid values are between 0 and 47.

lcd.fill(colour)
Fill the screen with the given colour (0 or 1 for white or black).

This method writes to the hidden buffer. Use show() to show the buffer.

lcd.get(x, y)
Get the pixel at the position (x, y). Returns 0 or 1.

This method reads from the visible buffer.

lcd.light(value)
Turn the backlight on/off. True or 1 turns it on, False or 0 turns it off.

lcd.pixel(x, y, colour)
Set the pixel at (x, y) to the given colour (0 or 1).

This method writes to the hidden buffer. Use show() to show the buffer.

lcd.show()
Show the hidden buffer on the screen.

lcd.text(str, x, y, colour)
Draw the given text to the position (x, y) using the given colour (0 or 1).

This method writes to the hidden buffer. Use show() to show the buffer.

lcd.write(str)
Write the string str to the screen. It will appear immediately.

class LED – LED object The LED object controls an individual LED (Light Emitting Diode).

Constructors
class pyb.LED(id)

Create an LED object associated with the given LED:

•id is the LED number, 1-4.

Methods
led.intensity([value])

Get or set the LED intensity. Intensity ranges between 0 (off) and 255 (full on). If no argument is
given, return the LED intensity. If an argument is given, set the LED intensity and return None.

led.off()
Turn the LED off.

led.on()
Turn the LED on.

led.toggle()
Toggle the LED between on and off.

9.4. Micro Python libraries 131

Micro Python Documentation, Выпуск 1.3.7

class Pin – control I/O pins A pin is the basic object to control I/O pins. It has methods to set the
mode of the pin (input, output, etc) and methods to get and set the digital logic level. For analog control of
a pin, see the ADC class.

Usage Model:

All Board Pins are predefined as pyb.Pin.board.Name

x1_pin = pyb.Pin.board.X1

g = pyb.Pin(pyb.Pin.board.X1, pyb.Pin.IN)

CPU pins which correspond to the board pins are available as pyb.cpu.Name. For the CPU pins, the names
are the port letter followed by the pin number. On the PYBv1.0, pyb.Pin.board.X1 and pyb.Pin.cpu.B6
are the same pin.

You can also use strings:

g = pyb.Pin(’X1’, pyb.Pin.OUT_PP)

Users can add their own names:

MyMapperDict = { ’LeftMotorDir’ : pyb.Pin.cpu.C12 }
pyb.Pin.dict(MyMapperDict)
g = pyb.Pin("LeftMotorDir", pyb.Pin.OUT_OD)

and can query mappings

pin = pyb.Pin("LeftMotorDir")

Users can also add their own mapping function:

def MyMapper(pin_name):
if pin_name == "LeftMotorDir":

return pyb.Pin.cpu.A0

pyb.Pin.mapper(MyMapper)

So, if you were to call: pyb.Pin("LeftMotorDir pyb.Pin.OUT_PP) then "LeftMotorDir" is passed directly
to the mapper function.

To summarise, the following order determines how things get mapped into an ordinal pin number:

1. Directly specify a pin object

2. User supplied mapping function

3. User supplied mapping (object must be usable as a dictionary key)

4. Supply a string which matches a board pin

5. Supply a string which matches a CPU port/pin

You can set pyb.Pin.debug(True) to get some debug information about how a particular object gets mapped
to a pin.

When a pin has the Pin.PULL_UP or Pin.PULL_DOWN pull-mode enabled, that pin has an effective 40k Ohm
resistor pulling it to 3V3 or GND respectively (except pin Y5 which has 11k Ohm resistors).

Constructors

132 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

class pyb.Pin(id, ...)
Create a new Pin object associated with the id. If additional arguments are given, they are used to
initialise the pin. See pin.init().

Class methods
Pin.af_list()

Returns an array of alternate functions available for this pin.
Pin.debug([state])

Get or set the debugging state (True or False for on or off).

Pin.dict([dict])
Get or set the pin mapper dictionary.

Pin.mapper([fun])
Get or set the pin mapper function.

Methods
pin.init(mode, pull=Pin.PULL_NONE, af=-1)

Initialise the pin:

•mode can be one of: - Pin.IN - configure the pin for input; - Pin.OUT_PP - configure the pin
for output, with push-pull control; - Pin.OUT_OD - configure the pin for output, with open-drain
control; - Pin.AF_PP - configure the pin for alternate function, pull-pull; - Pin.AF_OD - configure
the pin for alternate function, open-drain; - Pin.ANALOG - configure the pin for analog.

•pull can be one of: - Pin.PULL_NONE - no pull up or down resistors; - Pin.PULL_UP - enable the
pull-up resistor; - Pin.PULL_DOWN - enable the pull-down resistor.

•when mode is Pin.AF_PP or Pin.AF_OD, then af can be the index or name of one of the alternate
functions associated with a pin.

Returns: None.
pin.high()

Set the pin to a high logic level.

pin.low()
Set the pin to a low logic level.

pin.value([value])
Get or set the digital logic level of the pin:

•With no argument, return 0 or 1 depending on the logic level of the pin.

•With value given, set the logic level of the pin. value can be anything that converts to a boolean.
If it converts to True, the pin is set high, otherwise it is set low.

pin.__str__()
Return a string describing the pin object.

pin.af()
Returns the currently configured alternate-function of the pin. The integer returned will match one of
the allowed constants for the af argument to the init function.

pin.gpio()
Returns the base address of the GPIO block associated with this pin.

pin.mode()
Returns the currently configured mode of the pin. The integer returned will match one of the allowed
constants for the mode argument to the init function.

9.4. Micro Python libraries 133

Micro Python Documentation, Выпуск 1.3.7

pin.name()
Get the pin name.

pin.names()
Returns the cpu and board names for this pin.

pin.pin()
Get the pin number.

pin.port()
Get the pin port.

pin.pull()
Returns the currently configured pull of the pin. The integer returned will match one of the allowed
constants for the pull argument to the init function.

Constants
Pin.AF_OD

initialise the pin to alternate-function mode with an open-drain drive
Pin.AF_PP

initialise the pin to alternate-function mode with a push-pull drive

Pin.ANALOG
initialise the pin to analog mode

Pin.IN
initialise the pin to input mode

Pin.OUT_OD
initialise the pin to output mode with an open-drain drive

Pin.OUT_PP
initialise the pin to output mode with a push-pull drive

Pin.PULL_DOWN
enable the pull-down resistor on the pin

Pin.PULL_NONE
don’t enable any pull up or down resistors on the pin

Pin.PULL_UP
enable the pull-up resistor on the pin

class PinAF – Pin Alternate Functions A Pin represents a physical pin on the microcprocessor. Each
pin can have a variety of functions (GPIO, I2C SDA, etc). Each PinAF object represents a particular function
for a pin.

Usage Model:

x3 = pyb.Pin.board.X3
x3_af = x3.af_list()

x3_af will now contain an array of PinAF objects which are availble on pin X3.

For the pyboard, x3_af would contain: [Pin.AF1_TIM2, Pin.AF2_TIM5, Pin.AF3_TIM9,
Pin.AF7_USART2]

Normally, each peripheral would configure the af automatically, but sometimes the same function is available
on multiple pins, and having more control is desired.

To configure X3 to expose TIM2_CH3, you could use:

134 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

pin = pyb.Pin(pyb.Pin.board.X3, mode=pyb.Pin.AF_PP, af=pyb.Pin.AF1_TIM2)

or:

pin = pyb.Pin(pyb.Pin.board.X3, mode=pyb.Pin.AF_PP, af=1)

Methods
pinaf.__str__()

Return a string describing the alternate function.
pinaf.index()

Return the alternate function index.

pinaf.name()
Return the name of the alternate function.

pinaf.reg()
Return the base register associated with the peripheral assigned to this alternate function. For example,
if the alternate function were TIM2_CH3 this would return stm.TIM2

class RTC – real time clock The RTC is and independent clock that keeps track of the date and time.

Example usage:

rtc = pyb.RTC()
rtc.datetime((2014, 5, 1, 4, 13, 0, 0, 0))
print(rtc.datetime())

Constructors
class pyb.RTC

Create an RTC object.

Methods
rtc.datetime([datetimetuple])

Get or set the date and time of the RTC.

With no arguments, this method returns an 8-tuple with the current date and time. With 1 argument
(being an 8-tuple) it sets the date and time.

The 8-tuple has the following format:

(year, month, day, weekday, hours, minutes, seconds, subseconds)

weekday is 1-7 for Monday through Sunday.

subseconds counts down from 255 to 0
rtc.info()

Get information about the startup time and reset source.

•The lower 0xffff are the number of milliseconds the RTC took to start up.

•Bit 0x10000 is set if a power-on reset occurred.

•Bit 0x20000 is set if an external reset occurred

class Servo – 3-wire hobby servo driver Servo controls standard hobby servos with 3-wires (ground,
power, signal).

9.4. Micro Python libraries 135

Micro Python Documentation, Выпуск 1.3.7

Constructors
class pyb.Servo(id)

Create a servo object. id is 1-4.

Methods
servo.angle([angle, time=0])

Get or set the angle of the servo.

•angle is the angle to move to in degrees.

•time is the number of milliseconds to take to get to the specified angle.
servo.calibration([pulse_min, pulse_max, pulse_centre[, pulse_angle_90, pulse_speed_100]])

Get or set the calibration of the servo timing.

servo.pulse_width([value])
Get or set the pulse width in milliseconds.

servo.speed([speed, time=0])
Get or set the speed of a continuous rotation servo.

•speed is the speed to move to change to, between -100 and 100.

•time is the number of milliseconds to take to get to the specified speed.

class SPI – a master-driven serial protocol SPI is a serial protocol that is driven by a master. At the
physical level there are 3 lines: SCK, MOSI, MISO.

See usage model of I2C; SPI is very similar. Main difference is parameters to init the SPI bus:

from pyb import SPI
spi = SPI(1, SPI.MASTER, baudrate=600000, polarity=1, phase=0, crc=0x7)

Only required parameter is mode, SPI.MASTER or SPI.SLAVE. Polarity can be 0 or 1, and is the level the
idle clock line sits at. Phase can be 0 or 1 to sample data on the first or second clock edge respectively. Crc
can be None for no CRC, or a polynomial specifier.

Additional method for SPI:

data = spi.send_recv(b’1234’) # send 4 bytes and receive 4 bytes
buf = bytearray(4)
spi.send_recv(b’1234’, buf) # send 4 bytes and receive 4 into buf
spi.send_recv(buf, buf) # send/recv 4 bytes from/to buf

Constructors
class pyb.SPI(bus, ...)

Construct an SPI object on the given bus. bus can be 1 or 2. With no additional parameters, the SPI
object is created but not initialised (it has the settings from the last initialisation of the bus, if any).
If extra arguments are given, the bus is initialised. See init for parameters of initialisation.

The physical pins of the SPI busses are:

•SPI(1) is on the X position: (NSS, SCK, MISO, MOSI) = (X5, X6, X7, X8) = (PA4, PA5,
PA6, PA7)

•SPI(2) is on the Y position: (NSS, SCK, MISO, MOSI) = (Y5, Y6, Y7, Y8) = (PB12, PB13,
PB14, PB15)

At the moment, the NSS pin is not used by the SPI driver and is free for other use.

136 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

Methods
spi.deinit()

Turn off the SPI bus.
spi.init(mode, baudrate=328125, *, polarity=1, phase=0, bits=8, firstbit=SPI.MSB, ti=False,

crc=None)
Initialise the SPI bus with the given parameters:

•mode must be either SPI.MASTER or SPI.SLAVE.

•baudrate is the SCK clock rate (only sensible for a master).

spi.recv(recv, *, timeout=5000)
Receive data on the bus:

•recv can be an integer, which is the number of bytes to receive, or a mutable buffer, which will
be filled with received bytes.

•timeout is the timeout in milliseconds to wait for the receive.

Return value: if recv is an integer then a new buffer of the bytes received, otherwise the same buffer
that was passed in to recv.

spi.send(send, *, timeout=5000)
Send data on the bus:

•send is the data to send (an integer to send, or a buffer object).

•timeout is the timeout in milliseconds to wait for the send.

Return value: None.

spi.send_recv(send, recv=None, *, timeout=5000)
Send and receive data on the bus at the same time:

•send is the data to send (an integer to send, or a buffer object).

•recv is a mutable buffer which will be filled with received bytes. It can be the same as send, or
omitted. If omitted, a new buffer will be created.

•timeout is the timeout in milliseconds to wait for the receive.

Return value: the buffer with the received bytes.

Constants
SPI.MASTER
SPI.SLAVE

for initialising the SPI bus to master or slave mode

SPI.LSB

SPI.MSB
set the first bit to be the least or most significant bit

class Switch – switch object A Switch object is used to control a push-button switch.

Usage:

sw = pyb.Switch() # create a switch object
sw() # get state (True if pressed, False otherwise)
sw.callback(f) # register a callback to be called when the

switch is pressed down
sw.callback(None) # remove the callback

9.4. Micro Python libraries 137

Micro Python Documentation, Выпуск 1.3.7

Example:

pyb.Switch().callback(lambda: pyb.LED(1).toggle())

Constructors
class pyb.Switch

Create and return a switch object.

Methods
switch()

Return the switch state: True if pressed down, False otherwise.
switch.callback(fun)

Register the given function to be called when the switch is pressed down. If fun is None, then it disables
the callback.

class Timer – control internal timers Timers can be used for a great variety of tasks. At the moment,
only the simplest case is implemented: that of calling a function periodically.

Each timer consists of a counter that counts up at a certain rate. The rate at which it counts is the peripheral
clock frequency (in Hz) divided by the timer prescaler. When the counter reaches the timer period it triggers
an event, and the counter resets back to zero. By using the callback method, the timer event can call a
Python function.

Example usage to toggle an LED at a fixed frequency:

tim = pyb.Timer(4) # create a timer object using timer 4
tim.init(freq=2) # trigger at 2Hz
tim.callback(lambda t:pyb.LED(1).toggle())

Further examples:

tim = pyb.Timer(4, freq=100) # freq in Hz
tim = pyb.Timer(4, prescaler=0, period=99)
tim.counter() # get counter (can also set)
tim.prescaler(2) # set prescaler (can also get)
tim.period(199) # set period (can also get)
tim.callback(lambda t: ...) # set callback for update interrupt (t=tim instance)
tim.callback(None) # clear callback

Note: Timer 3 is reserved for internal use. Timer 5 controls the servo driver, and Timer 6 is used for timed
ADC/DAC reading/writing. It is recommended to use the other timers in your programs.

Constructors
class pyb.Timer(id, ...)

Construct a new timer object of the given id. If additional arguments are given, then the timer is
initialised by init(...). id can be 1 to 14, excluding 3.

Methods
timer.callback(fun)

Set the function to be called when the timer triggers. fun is passed 1 argument, the timer object. If
fun is None then the callback will be disabled.

138 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

timer.channel(channel, mode, ...)
If only a channel number is passed, then a previously initialized channel object is returned (or None if
there is no previous channel).

Othwerwise, a TimerChannel object is initialized and returned.

Each channel can be configured to perform pwm, output compare, or input capture. All channels share
the same underlying timer, which means that they share the same timer clock.

Keyword arguments:

•mode can be one of:

–Timer.PWM — configure the timer in PWM mode (active high).

–Timer.PWM_INVERTED — configure the timer in PWM mode (active low).

–Timer.OC_TIMING — indicates that no pin is driven.

–Timer.OC_ACTIVE — the pin will be made active when a compare match occurs (active is
determined by polarity)

–Timer.OC_INACTIVE — the pin will be made inactive when a compare match occurs.

–Timer.OC_TOGGLE — the pin will be toggled when an compare match occurs.

–Timer.OC_FORCED_ACTIVE — the pin is forced active (compare match is ignored).

–Timer.OC_FORCED_INACTIVE — the pin is forced inactive (compare match is ignored).

–Timer.IC — configure the timer in Input Capture mode.

•callback - as per TimerChannel.callback()

•pin None (the default) or a Pin object. If specified (and not None) this will cause the alternate
function of the the indicated pin to be configured for this timer channel. An error will be raised
if the pin doesn’t support any alternate functions for this timer channel.

Keyword arguments for Timer.PWM modes:

•pulse_width - determines the initial pulse width value to use.

•pulse_width_percent - determines the initial pulse width percentage to use.

Keyword arguments for Timer.OC modes:

•compare - determines the initial value of the compare register.

•polarity can be one of: - Timer.HIGH - output is active high - Timer.LOW - output is acive low

Optional keyword arguments for Timer.IC modes:

•polarity can be one of: - Timer.RISING - captures on rising edge. - Timer.FALLING -
captures on falling edge. - Timer.BOTH - captures on both edges.

Note that capture only works on the primary channel, and not on the complimentary
channels.

PWM Example:

timer = pyb.Timer(2, freq=1000)
ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=210000)
ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=420000)

timer.counter([value])
Get or set the timer counter.

9.4. Micro Python libraries 139

Micro Python Documentation, Выпуск 1.3.7

timer.deinit()
Deinitialises the timer.

Disables the callback (and the associated irq). Disables any channel callbacks (and the associated irq).
Stops the timer, and disables the timer peripheral.

timer.freq([value])
Get or set the frequency for the timer (changes prescaler and period if set).

timer.init(*, freq, prescaler, period)
Initialise the timer. Initialisation must be either by frequency (in Hz) or by prescaler and period:

tim.init(freq=100) # set the timer to trigger at 100Hz
tim.init(prescaler=83, period=999) # set the prescaler and period directly

Keyword arguments:

•freq — specifies the periodic frequency of the timer. You migh also view this as the
frequency with which the timer goes through one complete cycle.

•prescaler [0-0xffff] - specifies the value to be loaded into the timer’s Prescaler Register
(PSC). The timer clock source is divided by (prescaler + 1) to arrive at the timer
clock. Timers 2-7 and 12-14 have a clock source of 84 MHz (pyb.freq()[2] * 2), and
Timers 1, and 8-11 have a clock source of 168 MHz (pyb.freq()[3] * 2).

•period [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5. Specifies the
value to be loaded into the timer’s AutoReload Register (ARR). This determines the
period of the timer (i.e. when the counter cycles). The timer counter will roll-over after
period + 1 timer clock cycles.

•mode can be one of:

–Timer.UP - configures the timer to count from 0 to ARR (default)

–Timer.DOWN - configures the timer to count from ARR down to 0.

–Timer.CENTER - confgures the timer to count from 0 to ARR and then back down
to 0.

•div can be one of 1, 2, or 4. Divides the timer clock to determine the sampling clock
used by the digital filters.

•callback - as per Timer.callback()

•deadtime - specifies the amount of “dead” or inactive time between transitions on
complimentary channels (both channels will be inactive) for this time). deadtime may
be an integer between 0 and 1008, with the following restrictions: 0-128 in steps of 1.
128-256 in steps of 2, 256-512 in steps of 8, and 512-1008 in steps of 16. deadime measures
ticks of source_freq divided by div clock ticks. deadtime is only available on timers 1
and 8.

You must either specify freq or both of period and prescaler.

timer.period([value])
Get or set the period of the timer.

timer.prescaler([value])
Get or set the prescaler for the timer.

timer.source_freq()
Get the frequency of the source of the timer.

140 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

class TimerChannel — setup a channel for a timer Timer channels are used to generate/capture a
signal using a timer.

TimerChannel objects are created using the Timer.channel() method.

Methods
timerchannel.callback(fun)

Set the function to be called when the timer channel triggers. fun is passed 1 argument, the timer
object. If fun is None then the callback will be disabled.

timerchannel.capture([value])
Get or set the capture value associated with a channel. capture, compare, and pulse_width are all
aliases for the same function. capture is the logical name to use when the channel is in input capture
mode.

timerchannel.compare([value])
Get or set the compare value associated with a channel. capture, compare, and pulse_width are all
aliases for the same function. compare is the logical name to use when the channel is in output compare
mode.

timerchannel.pulse_width([value])
Get or set the pulse width value associated with a channel. capture, compare, and pulse_width are
all aliases for the same function. pulse_width is the logical name to use when the channel is in PWM
mode.

In edge aligned mode, a pulse_width of period + 1 corresponds to a duty cycle of 100% In center
aligned mode, a pulse width of period corresponds to a duty cycle of 100%

timerchannel.pulse_width_percent([value])
Get or set the pulse width percentage associated with a channel. The value is a number between 0
and 100 and sets the percentage of the timer period for which the pulse is active. The value can be an
integer or floating-point number for more accuracy. For example, a value of 25 gives a duty cycle of
25%.

class UART – duplex serial communication bus UART implements the standard UART/USART
duplex serial communications protocol. At the physical level it consists of 2 lines: RX and TX. The unit of
communication is a character (not to be confused with a string character) which can be 8 or 9 bits wide.

UART objects can be created and initialised using:

from pyb import UART

uart = UART(1, 9600) # init with given baudrate
uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters

Bits can be 7, 8 or 9. Parity can be None, 0 (even) or 1 (odd). Stop can be 1 or 2.

Note: with parity=None, only 8 and 9 bits are supported. With parity enabled, only 7 and 8 bits are
supported.

A UART object acts like a stream object and reading and writing is done using the standard stream methods:

uart.read(10) # read 10 characters, returns a bytes object
uart.readall() # read all available characters
uart.readline() # read a line
uart.readinto(buf) # read and store into the given buffer
uart.write(’abc’) # write the 3 characters

Individual characters can be read/written using:

9.4. Micro Python libraries 141

Micro Python Documentation, Выпуск 1.3.7

uart.readchar() # read 1 character and returns it as an integer
uart.writechar(42) # write 1 character

To check if there is anything to be read, use:

uart.any() # returns True if any characters waiting

Note: The stream functions read, write etc Are new in Micro Python since v1.3.4. Earlier versions use
uart.send and uart.recv.

Constructors
class pyb.UART(bus, ...)

Construct a UART object on the given bus. bus can be 1-6, or ‘XA’, ‘XB’, ‘YA’, or ‘YB’. With no
additional parameters, the UART object is created but not initialised (it has the settings from the
last initialisation of the bus, if any). If extra arguments are given, the bus is initialised. See init for
parameters of initialisation.

The physical pins of the UART busses are:

•UART(4) is on XA: (TX, RX) = (X1, X2) = (PA0, PA1)

•UART(1) is on XB: (TX, RX) = (X9, X10) = (PB6, PB7)

•UART(6) is on YA: (TX, RX) = (Y1, Y2) = (PC6, PC7)

•UART(3) is on YB: (TX, RX) = (Y9, Y10) = (PB10, PB11)

•UART(2) is on: (TX, RX) = (X3, X4) = (PA2, PA3)

Methods
uart.init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0,

read_buf_len=64)
Initialise the UART bus with the given parameters:

•baudrate is the clock rate.

•bits is the number of bits per character, 7, 8 or 9.

•parity is the parity, None, 0 (even) or 1 (odd).

•stop is the number of stop bits, 1 or 2.

•timeout is the timeout in milliseconds to wait for the first character.

•timeout_char is the timeout in milliseconds to wait between characters.

•read_buf_len is the character length of the read buffer (0 to disable).

Note: with parity=None, only 8 and 9 bits are supported. With parity enabled, only 7 and 8 bits are
supported.

uart.deinit()
Turn off the UART bus.

uart.any()
Return True if any characters waiting, else False.

uart.read([nbytes])
Read characters. If nbytes is specified then read at most that many bytes.

Note: for 9 bit characters each character takes two bytes, nbytes must be even, and the number of
characters is nbytes/2.

142 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

Return value: a bytes object containing the bytes read in. Returns b’’ on timeout.

uart.readall()
Read as much data as possible.

Return value: a bytes object.

uart.readchar()
Receive a single character on the bus.

Return value: The character read, as an integer. Returns -1 on timeout.

uart.readinto(buf [, nbytes])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at
most len(buf) bytes.

Return value: number of bytes read and stored into buf.

uart.readline()
Read a line, ending in a newline character.

Return value: the line read.

uart.write(buf)
Write the buffer of bytes to the bus. If characters are 7 or 8 bits wide then each byte is one character.
If characters are 9 bits wide then two bytes are used for each character (little endian), and buf must
contain an even number of bytes.

Return value: number of bytes written.

uart.writechar(char)
Write a single character on the bus. char is an integer to write. Return value: None.

class USB_VCP – USB virtual comm port The USB_VCP class allows creation of an object
representing the USB virtual comm port. It can be used to read and write data over USB to the connected
host.

Constructors
class pyb.USB_VCP

Create a new USB_VCP object.

Methods
usb_vcp.any()

Return True if any characters waiting, else False.
usb_vcp.close()

usb_vcp.read([nbytes])
usb_vcp.readall()

usb_vcp.readline()

usb_vcp.recv(data, *, timeout=5000)
Receive data on the bus:

•data can be an integer, which is the number of bytes to receive, or a mutable buffer, which will
be filled with received bytes.

•timeout is the timeout in milliseconds to wait for the receive.

9.4. Micro Python libraries 143

Micro Python Documentation, Выпуск 1.3.7

Return value: if data is an integer then a new buffer of the bytes received, otherwise the number of
bytes read into data is returned.

usb_vcp.send(data, *, timeout=5000)
Send data over the USB VCP:

•data is the data to send (an integer to send, or a buffer object).

•timeout is the timeout in milliseconds to wait for the send.

Return value: number of bytes sent.

usb_vcp.write(buf)

network — network configuration

This module provides network drivers and routing configuration.

class CC3k

Constructors
class network.CC3k(spi, pin_cs, pin_en, pin_irq)

Initialise the CC3000 using the given SPI bus and pins and return a CC3k object.

Methods
cc3k.connect(ssid, key=None, *, security=WPA2, bssid=None)

class WIZnet5k

This class allows you to control WIZnet5x00 Ethernet adaptors based on the W5200 and W5500 chipsets
(only W5200 tested).

Example usage:

import wiznet5k
w = wiznet5k.WIZnet5k()
print(w.ipaddr())
w.gethostbyname(’micropython.org’)
s = w.socket()
s.connect((’192.168.0.2’, 8080))
s.send(’hello’)
print(s.recv(10))

Constructors
class network.WIZnet5k(spi, pin_cs, pin_rst)

Create and return a WIZnet5k object.

Methods
wiznet5k.ipaddr([(ip, subnet, gateway, dns)])

Get/set IP address, subnet mask, gateway and DNS.
wiznet5k.regs()

Dump WIZnet5k registers.

144 Глава 9. Micro Python documentation contents

Micro Python Documentation, Выпуск 1.3.7

9.5 The pyboard hardware

• PYBv1.0 schematics and layout (2.4MiB PDF)

• PYBv1.0 metric dimensions (360KiB PDF)

• PYBv1.0 imperial dimensions (360KiB PDF)

9.6 Datasheets for the components on the pyboard

• The microcontroller: STM32F405RGT6 (link to manufacturer’s site)

• The accelerometer: Freescale MMA7660 (800kiB PDF)

• The LDO voltage regulator: Microchip MCP1802 (400kiB PDF)

9.7 Datasheets for other components

• The LCD display on the LCD touch-sensor skin: Newhaven Display NHD-C12832A1Z-FSW-FBW-3V3
(460KiB PDF)

• The touch sensor chip on the LCD touch-sensor skin: Freescale MPR121 (280KiB PDF)

• The digital potentiometer on the audio skin: Microchip MCP4541 (2.7MiB PDF)

9.8 Micro Python license information

The MIT License (MIT)

Copyright (c) 2013, 2014 Damien P. George, and others

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

9.5. The pyboard hardware 145

http://micropython.org/resources/PYBv10b.pdf
http://micropython.org/resources/PYBv10b-metric-dimensions.pdf
http://micropython.org/resources/PYBv10b-imperial-dimensions.pdf
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN1035/PF252144
http://micropython.org/resources/datasheets/MMA7660FC.pdf
http://micropython.org/resources/datasheets/MCP1802-22053C.pdf
http://micropython.org/resources/datasheets/NHD-C12832A1Z-FSW-FBW-3V3.pdf
http://micropython.org/resources/datasheets/MPR121.pdf
http://micropython.org/resources/datasheets/MCP4541-22107B.pdf

Micro Python Documentation, Выпуск 1.3.7

146 Глава 9. Micro Python documentation contents

Глава 10

Indices and tables

• genindex

• modindex

• search

147

Micro Python Documentation, Выпуск 1.3.7

148 Глава 10. Indices and tables

Содержание модулей Python

c
cmath, 113

g
gc, 114

m
math, 114

n
network, 144

o
os, 116

p
pyb, 120

s
select, 117
struct, 118
sys, 118

t
time, 119

u
uheapq, 120
ujson, 120
usocket, 119

149

Micro Python Documentation, Выпуск 1.3.7

150 Содержание модулей Python

Алфавитный указатель

Symbols
__str__() (метод pin), 60, 133
__str__() (метод pinaf), 61, 135

A
acos() (в модуле math), 40, 114
acosh() (в модуле math), 40, 114
af() (метод pin), 60, 133
af_list() (метод Pin), 59, 133
angle() (метод servo), 62, 136
any() (метод can), 51, 125
any() (метод uart), 69, 142
any() (метод usb_vcp), 70, 143
argv (в модуле sys), 44, 118
asin() (в модуле math), 40, 114
asinh() (в модуле math), 40, 114
atan() (в модуле math), 40, 114
atan2() (в модуле math), 40, 114
atanh() (в модуле math), 40, 114

B
bootloader() (в модуле pyb), 47, 121
byteorder (в модуле sys), 44, 118

C
calcsize() (в модуле struct), 44, 118
calibration() (метод servo), 62, 136
callback() (метод switch), 64, 138
callback() (метод timer), 65, 138
callback() (метод timerchannel), 67, 141
CAN.LOOPBACK (встроенная переменная), 51,

125
CAN.NORMAL (встроенная переменная), 51, 125
CAN.SILENT (встроенная переменная), 51, 125
CAN.SILENT_LOOPBACK (встроенная перемен-

ная), 51, 125
capture() (метод timerchannel), 67, 141
CC3k (класс в network), 71, 144
ceil() (в модуле math), 40, 114
channel() (метод timer), 65, 139

chdir() (в модуле os), 43, 116
close() (метод usb_vcp), 70, 143
cmath (модуль), 39, 113
collect() (в модуле gc), 40, 114
command() (метод lcd), 57, 131
compare() (метод timerchannel), 67, 141
connect() (метод network.cc3k), 71, 144
contrast() (метод lcd), 57, 131
copysign() (в модуле math), 41, 114
cos() (в модуле cmath), 39, 113
cos() (в модуле math), 41, 114
cosh() (в модуле math), 41, 115
counter() (метод timer), 66, 139

D
datetime() (метод rtc), 62, 135
debug() (метод Pin), 59, 133
degrees() (в модуле math), 41, 115
deinit() (метод can), 51, 125
deinit() (метод i2c), 55, 129
deinit() (метод spi), 63, 137
deinit() (метод timer), 66, 139
deinit() (метод uart), 69, 142
delay() (в модуле pyb), 47, 120
dict() (метод Pin), 59, 133
disable() (метод extint), 54, 127
disable() (в модуле gc), 40, 114
disable_irq() (в модуле pyb), 48, 121
dumps() (в модуле ujson), 46, 120

E
e (в модуле cmath), 40, 113
e (в модуле math), 42, 116
elapsed_micros() (в модуле pyb), 47, 121
elapsed_millis() (в модуле pyb), 47, 121
enable() (метод extint), 54, 127
enable() (в модуле gc), 40, 114
enable_irq() (в модуле pyb), 48, 121
erf() (в модуле math), 41, 115
erfc() (в модуле math), 41, 115

151

Micro Python Documentation, Выпуск 1.3.7

exit() (в модуле sys), 44, 118
exp() (в модуле cmath), 39, 113
exp() (в модуле math), 41, 115
expm1() (в модуле math), 41, 115
ExtInt.IRQ_FALLING (встроенная переменная),

54, 127
ExtInt.IRQ_RISING (встроенная переменная), 54,

127
ExtInt.IRQ_RISING_FALLING (встроенная пере-

менная), 54, 127

F
fabs() (в модуле math), 41, 115
fill() (метод lcd), 57, 131
filtered_xyz() (метод accel), 49, 123
floor() (в модуле math), 41, 115
fmod() (в модуле math), 41, 115
freq() (метод timer), 66, 140
freq() (в модуле pyb), 48, 122
frexp() (в модуле math), 41, 115

G
gamma() (в модуле math), 41, 115
gc (модуль), 40, 114
get() (метод lcd), 57, 131
getaddrinfo() (в модуле usocket), 46, 120
getcwd() (в модуле os), 43, 116
gpio() (метод pin), 60, 133

H
hard_reset() (в модуле pyb), 47, 121
have_cdc() (в модуле pyb), 48, 122
heapify() (в модуле uheapq), 46, 120
heappop() (в модуле uheapq), 46, 120
heappush() (в модуле uheapq), 46, 120
hid() (в модуле pyb), 48, 122
high() (метод pin), 60, 133

I
I2C.MASTER (встроенная переменная), 56, 130
I2C.SLAVE (встроенная переменная), 56, 130
index() (метод pinaf), 61, 135
info() (метод rtc), 62, 135
info() (в модуле pyb), 48, 122
init() (метод can), 51, 124
init() (метод i2c), 55, 129
init() (метод pin), 59, 133
init() (метод spi), 63, 137
init() (метод timer), 66, 140
init() (метод uart), 69, 142
intensity() (метод led), 58, 131
ipaddr() (метод network.wiznet5k), 71, 144
is_ready() (метод i2c), 55, 129

isfinite() (в модуле math), 41, 115
isinf() (в модуле math), 41, 115
isnan() (в модуле math), 41, 115

L
ldexp() (в модуле math), 41, 115
lgamma() (в модуле math), 41, 115
light() (метод lcd), 57, 131
line() (метод extint), 54, 127
listdir() (в модуле os), 43, 116
loads() (в модуле ujson), 46, 120
localtime() (в модуле time), 45, 119
log() (в модуле cmath), 39, 113
log() (в модуле math), 41, 115
log10() (в модуле cmath), 39, 113
log10() (в модуле math), 41, 115
log2() (в модуле math), 41, 115
low() (метод pin), 60, 133

M
mapper() (метод Pin), 59, 133
math (модуль), 40, 114
mem_alloc() (в модуле gc), 40, 114
mem_free() (в модуле gc), 40, 114
mem_read() (метод i2c), 55, 129
mem_write() (метод i2c), 55, 129
micros() (в модуле pyb), 47, 121
millis() (в модуле pyb), 47, 120
mkdir() (в модуле os), 43, 116
mktime() (в модуле time), 45, 119
mode() (метод pin), 60, 133
modf() (в модуле math), 42, 115
modify() (метод select.poll), 44, 117

N
name() (метод pin), 60, 133
name() (метод pinaf), 61, 135
names() (метод pin), 60, 134
network (модуль), 71, 144
noise() (метод dac), 52, 126

O
off() (метод led), 58, 131
on() (метод led), 58, 131
os (модуль), 42, 116

P
pack() (в модуле struct), 44, 118
path (в модуле sys), 44, 118
period() (метод timer), 67, 140
phase() (в модуле cmath), 39, 113
pi (в модуле cmath), 40, 113
pi (в модуле math), 42, 116

152 Алфавитный указатель

Micro Python Documentation, Выпуск 1.3.7

pin() (метод pin), 60, 134
Pin.AF_OD (встроенная переменная), 60, 134
Pin.AF_PP (встроенная переменная), 60, 134
Pin.ANALOG (встроенная переменная), 60, 134
Pin.IN (встроенная переменная), 60, 134
Pin.OUT_OD (встроенная переменная), 60, 134
Pin.OUT_PP (встроенная переменная), 60, 134
Pin.PULL_DOWN (встроенная переменная), 61,

134
Pin.PULL_NONE (встроенная переменная), 61,

134
Pin.PULL_UP (встроенная переменная), 61, 134
pixel() (метод lcd), 57, 131
platform (в модуле sys), 44, 118
polar() (в модуле cmath), 39, 113
poll() (метод select.poll), 44, 117
poll() (в модуле select), 43, 117
port() (метод pin), 60, 134
pow() (в модуле math), 42, 115
prescaler() (метод timer), 67, 140
pull() (метод pin), 60, 134
pulse_width() (метод servo), 62, 136
pulse_width() (метод timerchannel), 68, 141
pulse_width_percent() (метод timerchannel), 68,

141
pyb (модуль), 47, 120
pyb.Accel (встроенный класс), 49, 123
pyb.ADC (встроенный класс), 50, 123
pyb.CAN (встроенный класс), 50, 124
pyb.DAC (встроенный класс), 52, 126
pyb.ExtInt (встроенный класс), 53, 127
pyb.I2C (встроенный класс), 55, 128
pyb.LCD (встроенный класс), 57, 130
pyb.LED (встроенный класс), 58, 131
pyb.Pin (встроенный класс), 59, 132
pyb.RTC (встроенный класс), 62, 135
pyb.Servo (встроенный класс), 62, 136
pyb.SPI (встроенный класс), 63, 136
pyb.Switch (встроенный класс), 64, 138
pyb.Timer (встроенный класс), 65, 138
pyb.UART (встроенный класс), 68, 142
pyb.USB_VCP (встроенный класс), 70, 143

R
radians() (в модуле math), 42, 116
read() (метод adc), 50, 123
read() (метод uart), 69, 142
read() (метод usb_vcp), 70, 143
read_timed() (метод adc), 50, 123
readall() (метод uart), 69, 143
readall() (метод usb_vcp), 70, 143
readchar() (метод uart), 69, 143
readinto() (метод uart), 69, 143
readline() (метод uart), 70, 143

readline() (метод usb_vcp), 70, 143
rect() (в модуле cmath), 39, 113
recv() (метод can), 51, 125
recv() (метод i2c), 56, 129
recv() (метод spi), 63, 137
recv() (метод usb_vcp), 70, 143
reg() (метод pinaf), 61, 135
register() (метод select.poll), 44, 117
regs() (метод ExtInt), 53, 127
regs() (метод network.wiznet5k), 71, 144
remove() (в модуле os), 43, 117
repl_uart() (в модуле pyb), 48, 122
rmdir() (в модуле os), 43, 117
rng() (в модуле pyb), 48, 122

S
scan() (метод i2c), 56, 129
select (модуль), 43, 117
select() (в модуле select), 43, 117
send() (метод can), 51, 125
send() (метод i2c), 56, 129
send() (метод spi), 63, 137
send() (метод usb_vcp), 70, 144
send_recv() (метод spi), 64, 137
sep (в модуле os), 43, 117
show() (метод lcd), 57, 131
sin() (в модуле cmath), 39, 113
sin() (в модуле math), 42, 116
sinh() (в модуле math), 42, 116
sleep() (в модуле time), 45, 119
socket() (в модуле usocket), 46, 120
source_freq() (метод timer), 67, 140
speed() (метод servo), 62, 136
SPI.LSB (встроенная переменная), 64, 137
SPI.MASTER (встроенная переменная), 64, 137
SPI.MSB (встроенная переменная), 64, 137
SPI.SLAVE (встроенная переменная), 64, 137
sqrt() (в модуле cmath), 39, 113
sqrt() (в модуле math), 42, 116
standby() (в модуле pyb), 48, 122
stat() (в модуле os), 43, 117
stderr (в модуле sys), 45, 118
stdin (в модуле sys), 45, 118
stdout (в модуле sys), 45, 118
stop() (в модуле pyb), 48, 122
struct (модуль), 44, 118
swint() (метод extint), 54, 127
switch(), 64, 138
sync() (в модуле os), 43, 117
sync() (в модуле pyb), 48, 122
sys (модуль), 44, 118

T
tan() (в модуле math), 42, 116

Алфавитный указатель 153

Micro Python Documentation, Выпуск 1.3.7

tanh() (в модуле math), 42, 116
text() (метод lcd), 57, 131
tilt() (метод accel), 49, 123
time (модуль), 45, 119
time() (в модуле time), 45, 119
toggle() (метод led), 58, 131
triangle() (метод dac), 52, 126
trunc() (в модуле math), 42, 116

U
udelay() (в модуле pyb), 47, 120
uheapq (модуль), 46, 120
ujson (модуль), 46, 120
unique_id() (в модуле pyb), 48, 122
unpack() (в модуле struct), 44, 118
unregister() (метод select.poll), 44, 117
urandom() (в модуле os), 43, 117
usocket (модуль), 46, 119

V
value() (метод pin), 60, 133
version (в модуле sys), 45, 118
version_info (в модуле sys), 45, 118

W
wfi() (в модуле pyb), 48, 122
WIZnet5k (класс в network), 71, 144
write() (метод dac), 52, 126
write() (метод lcd), 57, 131
write() (метод uart), 70, 143
write() (метод usb_vcp), 70, 144
write_timed() (метод dac), 52, 126
writechar() (метод uart), 70, 143

X
x() (метод accel), 49, 123

Y
y() (метод accel), 49, 123

Z
z() (метод accel), 49, 123

154 Алфавитный указатель

	Quick reference for the pyboard
	General board control
	LEDs
	Pins and GPIO
	External interrupts
	Timers
	PWM (pulse width modulation)
	ADC (analog to digital conversion)
	DAC (digital to analog conversion)
	UART (serial bus)
	SPI bus
	I2C bus

	General information about the pyboard
	Local filesystem and SD card
	Boot modes
	Errors: flashing LEDs

	Micro Python tutorial
	Introduction to the pyboard
	Running your first script
	Getting a Micro Python REPL prompt
	Turning on LEDs and basic Python concepts
	The Switch, callbacks and interrupts
	The accelerometer
	Safe mode and factory reset
	Making the pyboard act as a USB mouse
	The Timers
	Inline assembler
	Power control
	Tutorials requiring extra components
	Tips, tricks and useful things to know

	Micro Python libraries
	Python standard libraries
	Python micro-libraries
	Libraries specific to the pyboard

	The pyboard hardware
	Datasheets for the components on the pyboard
	Datasheets for other components
	Micro Python license information
	Micro Python documentation contents
	Quick reference for the pyboard
	General information about the pyboard
	Micro Python tutorial
	Micro Python libraries
	The pyboard hardware
	Datasheets for the components on the pyboard
	Datasheets for other components
	Micro Python license information

	Indices and tables
	Содержание модулей Python

